Enhancing Solar Panel Efficiency through Cost-Effective Cooling Strategies

Article Preview

Abstract:

This study addresses the critical challenge of maintaining optimal temperatures in solar panels to maximize energy conversion efficiency. Efficient cooling is essential to mitigate performance degradation due to elevated temperatures. Our research proposes a novel and cost-effective cooling system designed to enhance solar panel performance under varying environmental conditions. The system integrates a 2 mm thick copper plate with attached copper tubes, facilitating the flow of 10°C cold water across the panel's backside. Additionally, a precision water spraying system delivers 0.5 liters per minute on the panel's surface. To bolster passive cooling, we incorporate paraffin wax alongside copper plates as phase change materials (PCMs), leveraging its high latent heat storage capacity to absorb excess heat effectively. Operational oversight is managed by an Arduino UNO, continuously monitoring real-time temperature data from DS18B20 sensors placed strategically at 10 cm intervals. Activation thresholds (typically set between 25°C to 30°C) automatically engage cooling mechanisms to maintain optimal operating conditions. Water pumps, operating at a sustainable flow rate of 3 liters per minute, are powered by auxiliary solar panels, ensuring minimal operational costs and environmental impact. Our findings underscore the efficacy of this integrated cooling approach in reducing solar panel temperatures, thereby enhancing overall efficiency and sustainability. This cost-effective solution holds significant promise for advancing solar energy technologies, contributing to economic viability and environmental conservation in solar power generation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-92

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Liu, B. Y. H., & Jordan, R. C. (1960). The interrelationship and characteristic distribution of direct, diffuse, and total solar radiation. Solar Energy, 4(3), 1-19. https://www.sciencedirect.com/science/article/abs/pii/S0038092X08002788

DOI: 10.1016/0038-092x(60)90062-1

Google Scholar

[2] Skoplaki, E., & Palyvos, J. A. (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy, 83(5), 614-624. https://www.sciencedirect.com/science/article/pii/S0927024816304664

DOI: 10.1016/j.solener.2008.10.008

Google Scholar

[3] Dubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world – A review. Energy Procedia, 33, 311-321. https://www.sciencedirect.com/science/article/pii/S1876610213003110

DOI: 10.1016/j.egypro.2013.05.072

Google Scholar

[4] Hossain, M. A., Rahman, K. S., Ibrahim, P. H., Hasanuzzaman, Y., Saidur, R., & Rejab, M. R. M. (2018). Photovoltaic thermal (PVT) systems: Principles, design and applications. Renewable and Sustainable Energy Reviews, 97, 275-306. https://www.sciencedirect.com/science/article/pii/S1364032117303055

Google Scholar

[5] Krauter, S. (2004). Increased electrical yield via water flow over the front of photovoltaic panels. Solar Energy Materials and Solar Cells, 82(1-2), 131-137. https://www.sciencedirect.com/science/article/pii/S0927024804000553

DOI: 10.1016/j.solmat.2004.01.011

Google Scholar

[6] Khatri, R., & Kumar, A. (2020) - Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review. https://www.sciencedirect.com/science/article/pii/S0927024816304664

Google Scholar

[7] Shukla, A. K., & Tiwari, G. N. (2018) - Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material. https://link.springer.com/article/

DOI: 10.1007/s11356-022-18719-9

Google Scholar

[8] Hossain, M. A., & Rahman, K. S. (2021) - Performance augmentation of PV panels using phase change material cooling technique: A review. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8990975/

Google Scholar

[9] Chauhan, A., Tyagi, V.V., & Anand, S. (2018). Futuristic approach for thermal management in solar PV/thermal systems with possible applications

DOI: 10.1088/1757-899X/444/8/082016

Google Scholar

[10] Colţ, G., 2016. Performance evaluation of a PV panel by rear surface water active cooling. 2016 International Conference Application Theory Electrical ICATE 2016 - Proc. 1–5

DOI: 10.1109/ICATE.2016.7754634

Google Scholar

[11] Hasanuzzaman M, Malek ABMA, Islam MM, Pandey AK, Rahim NA (2016) Global advancement of cooling technologies for PV systems: a review. Sol Energy 137:25–45

DOI: 10.1016/j.solener.2016.07.010

Google Scholar

[12] Huang MJ, Eames PC, Norton B (2006) Phase change materials for limiting temperature rise in building integrated photovoltaics. Sol Energy 80:1121–1130

DOI: 10.1016/j.solener.2005.10.006

Google Scholar

[13] L. Dorobantu, M. O. Popescu, C. L. Popescu and A. Craciunescu, "Experimental Assessment of PV Panels Front Water Cooling Strategy", International Conference on Renewable Energies and Power Quality (ICREPQ'13) Bilbao (Spain) 20th to 22th March 2013 Renewable Energy and Power Quality Journal (RE&PQJ), no. 11, March 2013. https://scholar.google.com/scholar?as_q=Experimental+Assessment+of+PV+Panels+Front+Water+Cooling+Strategy&as_occt=title&hl=en&as_sdt=0%2C31

DOI: 10.24084/repqj11.510

Google Scholar

[14] Wu S-Y, Chen C, Xiao L. Heat transfer characteristics and performance evaluation of water-cooled PV/T system with cooling channel above PV panel. Renew Energy. 2018;125:936–946. https://www.sciencedirect.com/science/article/abs/pii/S0960148118303288?via%3Dihub

DOI: 10.1016/j.renene.2018.03.023

Google Scholar

[15] Zanlorenzi G, Szejka AL, Junior OC. Hybrid photovoltaic module for efficiency improvement through an automatic water cooling system: a prototype case study. J Clean Prod. 2018;196:535–546. https://www.sciencedirect.com/science/article/abs/pii/S0959652618317153?via%3Dihub

DOI: 10.1016/j.jclepro.2018.06.065

Google Scholar

[16] Cuce E, Bali T, Sekucoglu SA. Effects of passive cooling on performance of silicon photovoltaic cells. Int J Low-Carbon Technol. 2011;6:299–308. doi: 10.1093/ijlct/ctr018. https://doi.org/10.1093%2Fijlct%2Fctr018

DOI: 10.1093/ijlct/ctr018

Google Scholar

[17] Mancin S, Diani A, Doretti L, Hooman K, Rossetto L. Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams. Int J Therm Sci. 2015;90:79–89. https://doi.org/10.1016%2Fj.ijthermalsci.2014.11.023

DOI: 10.1016/j.ijthermalsci.2014.11.023

Google Scholar

[18] Odeh S, Behnia M. Improving photovoltaic module efficiency using water cooling. Heat Transf Eng. 2009;30:499–505. https://doi.org/10.1080%2F01457630802529214

DOI: 10.1080/01457630802529214

Google Scholar

[19] Salem MR, Elsayed MM, Abd-Elaziz AA, Elshazly KM. Performance enhancement of the photovoltaic cells using Al2O3/PCM mixture and/or water cooling-techniques. Renew Energy. 2019;138:876–890. https://doi.org/10.1016%2Fj.renene.2019.02.032

DOI: 10.1016/j.renene.2019.02.032

Google Scholar

[20] Schoeddert, A., Babooram, K. & Pelletier, S. Reduction of water waste in an organic chemistry laboratory using a low-cost recirculation system for condenser apparatus. J. Chem. Educ. 96, 180–182. https://doi.org/10.1021/acs.jchemed.8b00400 (2019).

DOI: 10.1021/acs.jchemed.8b00400

Google Scholar

[21] Influence of temperature on the performance of photovoltaic polycrystalline silicon modules A. Q. Malik, Lim Chee Ming, Tan Kha Sheng and M. Blundell Faculty of Science, University of Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam. https://www.researchgate.net/publication/322081958_Influence_of_Temperature_on_the_Performance_of_Photovoltaic_Polycrystalline_Silicon_Module_in_the_Bruneian_Climate

DOI: 10.7186/bgsm73202210

Google Scholar

[22] Gomaa, M.R.; Ahmed, M.; Rezk, H. Temperature Distribution Modeling of PV and Cooling Water PV/T Collectors through Thin and Thick Cooling Cross-Fined Channel Box. Energy Rep. 2022, 8, 1144–1153

DOI: 10.1016/j.egyr.2021.11.061

Google Scholar

[23] Sheik, M.S.; Kakati, P.; Dandotiya, D.; Udaya Ravi, M.; Ramesh, C.S. A Comprehensive Review on Various Cooling Techniques to Decrease an Operating Temperature of Solar Photovoltaic Panels. Energy Nexus 2022, 8, 100161. https://doi.org/10.1016/j.nexus. 2022.100161

DOI: 10.1016/j.nexus.2022.100161

Google Scholar

[24] Mahdavi, A.; Farhadi, M.; Gorji-Bandpy, M.; Mahmoudi, A.H. A review of passive cooling of photovoltaic devices. Clean. Eng. Technol. 2022, 11, 100579. https://doi.org/10.1016/ j.clet.2022.100579

DOI: 10.1016/j.clet.2022.100579

Google Scholar

[25] Panda, S.; Panda, B.; Jena, C.; Nanda, L.; Pradhan, A. Investigating the similarities and differences between front and back surface cooling for PV panels. Mater. Today Proc. 2022, 74, 358–363

DOI: 10.1016/j.matpr.2022.08.424

Google Scholar

[26] Smith, C.; Forster, P.M.; Crook, R. Global analysis of photovoltaic energy output enhanced by phase change material cooling. Appl. Energy 2014, 126, 21–28

DOI: 10.1016/j.apenergy.2014.03.083

Google Scholar

[27] Bayrak, F.; Oztop, H.F.; Selimefendigil, F. Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Convers. Manag. 2020, 212, 112789

DOI: 10.1016/j.enconman.2020.112789

Google Scholar