[1]
Liu, B. Y. H., & Jordan, R. C. (1960). The interrelationship and characteristic distribution of direct, diffuse, and total solar radiation. Solar Energy, 4(3), 1-19. https://www.sciencedirect.com/science/article/abs/pii/S0038092X08002788
DOI: 10.1016/0038-092x(60)90062-1
Google Scholar
[2]
Skoplaki, E., & Palyvos, J. A. (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy, 83(5), 614-624. https://www.sciencedirect.com/science/article/pii/S0927024816304664
DOI: 10.1016/j.solener.2008.10.008
Google Scholar
[3]
Dubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world – A review. Energy Procedia, 33, 311-321. https://www.sciencedirect.com/science/article/pii/S1876610213003110
DOI: 10.1016/j.egypro.2013.05.072
Google Scholar
[4]
Hossain, M. A., Rahman, K. S., Ibrahim, P. H., Hasanuzzaman, Y., Saidur, R., & Rejab, M. R. M. (2018). Photovoltaic thermal (PVT) systems: Principles, design and applications. Renewable and Sustainable Energy Reviews, 97, 275-306. https://www.sciencedirect.com/science/article/pii/S1364032117303055
Google Scholar
[5]
Krauter, S. (2004). Increased electrical yield via water flow over the front of photovoltaic panels. Solar Energy Materials and Solar Cells, 82(1-2), 131-137. https://www.sciencedirect.com/science/article/pii/S0927024804000553
DOI: 10.1016/j.solmat.2004.01.011
Google Scholar
[6]
Khatri, R., & Kumar, A. (2020) - Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review. https://www.sciencedirect.com/science/article/pii/S0927024816304664
Google Scholar
[7]
Shukla, A. K., & Tiwari, G. N. (2018) - Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material. https://link.springer.com/article/
DOI: 10.1007/s11356-022-18719-9
Google Scholar
[8]
Hossain, M. A., & Rahman, K. S. (2021) - Performance augmentation of PV panels using phase change material cooling technique: A review. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8990975/
Google Scholar
[9]
Chauhan, A., Tyagi, V.V., & Anand, S. (2018). Futuristic approach for thermal management in solar PV/thermal systems with possible applications
DOI: 10.1088/1757-899X/444/8/082016
Google Scholar
[10]
Colţ, G., 2016. Performance evaluation of a PV panel by rear surface water active cooling. 2016 International Conference Application Theory Electrical ICATE 2016 - Proc. 1–5
DOI: 10.1109/ICATE.2016.7754634
Google Scholar
[11]
Hasanuzzaman M, Malek ABMA, Islam MM, Pandey AK, Rahim NA (2016) Global advancement of cooling technologies for PV systems: a review. Sol Energy 137:25–45
DOI: 10.1016/j.solener.2016.07.010
Google Scholar
[12]
Huang MJ, Eames PC, Norton B (2006) Phase change materials for limiting temperature rise in building integrated photovoltaics. Sol Energy 80:1121–1130
DOI: 10.1016/j.solener.2005.10.006
Google Scholar
[13]
L. Dorobantu, M. O. Popescu, C. L. Popescu and A. Craciunescu, "Experimental Assessment of PV Panels Front Water Cooling Strategy", International Conference on Renewable Energies and Power Quality (ICREPQ'13) Bilbao (Spain) 20th to 22th March 2013 Renewable Energy and Power Quality Journal (RE&PQJ), no. 11, March 2013. https://scholar.google.com/scholar?as_q=Experimental+Assessment+of+PV+Panels+Front+Water+Cooling+Strategy&as_occt=title&hl=en&as_sdt=0%2C31
DOI: 10.24084/repqj11.510
Google Scholar
[14]
Wu S-Y, Chen C, Xiao L. Heat transfer characteristics and performance evaluation of water-cooled PV/T system with cooling channel above PV panel. Renew Energy. 2018;125:936–946. https://www.sciencedirect.com/science/article/abs/pii/S0960148118303288?via%3Dihub
DOI: 10.1016/j.renene.2018.03.023
Google Scholar
[15]
Zanlorenzi G, Szejka AL, Junior OC. Hybrid photovoltaic module for efficiency improvement through an automatic water cooling system: a prototype case study. J Clean Prod. 2018;196:535–546. https://www.sciencedirect.com/science/article/abs/pii/S0959652618317153?via%3Dihub
DOI: 10.1016/j.jclepro.2018.06.065
Google Scholar
[16]
Cuce E, Bali T, Sekucoglu SA. Effects of passive cooling on performance of silicon photovoltaic cells. Int J Low-Carbon Technol. 2011;6:299–308. doi: 10.1093/ijlct/ctr018. https://doi.org/10.1093%2Fijlct%2Fctr018
DOI: 10.1093/ijlct/ctr018
Google Scholar
[17]
Mancin S, Diani A, Doretti L, Hooman K, Rossetto L. Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams. Int J Therm Sci. 2015;90:79–89. https://doi.org/10.1016%2Fj.ijthermalsci.2014.11.023
DOI: 10.1016/j.ijthermalsci.2014.11.023
Google Scholar
[18]
Odeh S, Behnia M. Improving photovoltaic module efficiency using water cooling. Heat Transf Eng. 2009;30:499–505. https://doi.org/10.1080%2F01457630802529214
DOI: 10.1080/01457630802529214
Google Scholar
[19]
Salem MR, Elsayed MM, Abd-Elaziz AA, Elshazly KM. Performance enhancement of the photovoltaic cells using Al2O3/PCM mixture and/or water cooling-techniques. Renew Energy. 2019;138:876–890. https://doi.org/10.1016%2Fj.renene.2019.02.032
DOI: 10.1016/j.renene.2019.02.032
Google Scholar
[20]
Schoeddert, A., Babooram, K. & Pelletier, S. Reduction of water waste in an organic chemistry laboratory using a low-cost recirculation system for condenser apparatus. J. Chem. Educ. 96, 180–182. https://doi.org/10.1021/acs.jchemed.8b00400 (2019).
DOI: 10.1021/acs.jchemed.8b00400
Google Scholar
[21]
Influence of temperature on the performance of photovoltaic polycrystalline silicon modules A. Q. Malik, Lim Chee Ming, Tan Kha Sheng and M. Blundell Faculty of Science, University of Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam. https://www.researchgate.net/publication/322081958_Influence_of_Temperature_on_the_Performance_of_Photovoltaic_Polycrystalline_Silicon_Module_in_the_Bruneian_Climate
DOI: 10.7186/bgsm73202210
Google Scholar
[22]
Gomaa, M.R.; Ahmed, M.; Rezk, H. Temperature Distribution Modeling of PV and Cooling Water PV/T Collectors through Thin and Thick Cooling Cross-Fined Channel Box. Energy Rep. 2022, 8, 1144–1153
DOI: 10.1016/j.egyr.2021.11.061
Google Scholar
[23]
Sheik, M.S.; Kakati, P.; Dandotiya, D.; Udaya Ravi, M.; Ramesh, C.S. A Comprehensive Review on Various Cooling Techniques to Decrease an Operating Temperature of Solar Photovoltaic Panels. Energy Nexus 2022, 8, 100161. https://doi.org/10.1016/j.nexus. 2022.100161
DOI: 10.1016/j.nexus.2022.100161
Google Scholar
[24]
Mahdavi, A.; Farhadi, M.; Gorji-Bandpy, M.; Mahmoudi, A.H. A review of passive cooling of photovoltaic devices. Clean. Eng. Technol. 2022, 11, 100579. https://doi.org/10.1016/ j.clet.2022.100579
DOI: 10.1016/j.clet.2022.100579
Google Scholar
[25]
Panda, S.; Panda, B.; Jena, C.; Nanda, L.; Pradhan, A. Investigating the similarities and differences between front and back surface cooling for PV panels. Mater. Today Proc. 2022, 74, 358–363
DOI: 10.1016/j.matpr.2022.08.424
Google Scholar
[26]
Smith, C.; Forster, P.M.; Crook, R. Global analysis of photovoltaic energy output enhanced by phase change material cooling. Appl. Energy 2014, 126, 21–28
DOI: 10.1016/j.apenergy.2014.03.083
Google Scholar
[27]
Bayrak, F.; Oztop, H.F.; Selimefendigil, F. Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Convers. Manag. 2020, 212, 112789
DOI: 10.1016/j.enconman.2020.112789
Google Scholar