Optimizing the Performance of Solar-Pond-Coupled Solar Stills via Taguchi Methodology

Article Preview

Abstract:

This study investigates the enhancement of solar still efficiency through the integration of a mini solar pond and reflective mirrors. Key variables affecting performance were identified: sodium chloride concentration, solar pond zone, and mirror angles. Four parameters were systematically varied across three levels and analyzed using an orthogonal array (L27). ​The optimal configuration was determined through Signal-to-Noise (S/N) ratio analysis, revealing that a concentration of 2.5 kg sodium chloride, a 75 cm solar pond zone, and specific mirror angles significantly improved distilled output. ​ It endeavors to uncover the significant factors contributing to the enhanced efficiency of the hybrid solar still-solar pond system and to establish the ideal configuration of parameters that improves distilled water generation capacity. Experimental results showcased a maximum daily water production of 3.25 liters with an efficiency of 53.26%. The research provides valuable insights for optimizing solar still performance in real-world applications, laying the groundwork for future advancements in solar desalination technologies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-78

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.N. Tiwari, A. K. Tiwari, (2007), Handbook of Solar Energy and Applications, Springer.

Google Scholar

[2] A.S. Nafey, M. Abdelkader, A. Abdelmotalip, A. A. Mabrouk, Solar still productivity enhancement, Energy Conversion and Management, 41(16) (2000) 1799-1814.

DOI: 10.1016/s0196-8904(99)00188-0

Google Scholar

[3] A.E. Kabeel, S. A. El-Agouz, Review of researches and developments on solar stills, Desalination, 276(1-3) (2011) 1-12.

DOI: 10.1016/j.desal.2011.03.042

Google Scholar

[4] G.N. Tiwari, H. N. Singh, Thermal analysis of a solar still integrated with a solar pond: A numerical study, Desalination, 159(1) (2003) 69-79.

Google Scholar

[5] V. Velmurugan, K. Srithar, S. Sridhar, Performance analysis of solar stills based on various factors affecting productivity, Renewable and Sustainable Energy Reviews, 12(2) (2008) 230-249.

DOI: 10.1016/j.rser.2010.10.012

Google Scholar

[6] K. Kalidasa Murugavel, K. Srithar, Performance enhancement of solar still integrated with a mini solar pond: An experimental study, Desalination, 280(1-3) (2011) 236-242.

Google Scholar

[7] N. Rahbar, J. A. Esfahani, Energy, exergy and economic analyses of a solar still using Taguchi optimization approach, Solar Energy, 86(5) (2012) 3036-3044.

Google Scholar

[8] S.K. Shukla, V.P.S. Sorayan, Thermal modeling of solar stills: A comprehensive review, Renewable and Sustainable Energy Reviews, 9(4) (2005) 283-293.

DOI: 10.1016/j.renene.2004.03.009

Google Scholar

[9] H.E.S. Fath, Development and optimization of solar desalination systems, Desalination, 159(1) (2003) 1-19.

Google Scholar

[10] A. S. Nafey, M. Abdelkader, A. Abdelmotalip, Solar pond integrated solar still for brine treatment and salt recovery, Energy Conversion and Management, 51(1) (2010) 86-91.

DOI: 10.1016/s0196-8904(00)00107-2

Google Scholar

[11] T. V. Arjunan, H. S. Aybar, N. Nedunchezhian, Status of solar desalination in India, Renewable and Sustainable Energy Reviews, 13(9) (2009) 2408-2418.

DOI: 10.1016/j.rser.2009.03.006

Google Scholar

[12] S. A. Kalogirou, Seawater desalination using renewable energy sources, Progress in Energy and Combustion Science, 31(3) (2005) 242-281.

DOI: 10.1016/j.pecs.2005.03.001

Google Scholar

[13] D. Murat, S. Zekai, Thermoeconomic optimization of solar-pond-coupled desalination systems using genetic algorithms, Desalination, 182(1-3) (2006) 113-120.

Google Scholar

[14] M. K. Gnanadason, K. Kalidasa Murugavel, S. Sivakumar, Factors affecting the productivity of solar stills – A review, Renewable and Sustainable Energy Reviews, 15(2) (2011) 1294-1304.

DOI: 10.1016/j.rser.2010.10.012

Google Scholar

[15] S. D. Gomkale, A. K. Dubey, Solar still with solar pond: A new configuration for performance enhancement, International Journal of Renewable Energy Research, 3(2) (2013) 451-455.

Google Scholar

[16] A. A. El-Sebaii, S. M. Shalaby, Review of passive solar distillation systems, Desalination, 276 (1-3) (2012) 1-12.

Google Scholar

[17] A. Ahsan, M. A. Imteaz, A. Rahman, Numerical modeling and experimental validation of a solar still integrated with a solar pond, Desalination, 311(1) (2013) 123-131.

Google Scholar

[18] K. Srithar, K. Kalidasa Murugavel, T. Rajaseenivasan, An experimental investigation on single basin solar still coupled with solar pond, Desalination, 379 (2016) 10-17.

DOI: 10.1016/j.desal.2013.03.029

Google Scholar

[19] A. Al-Karaghouli, W. E. Alnaser, Performance and cost analysis of a solar pond coupled with a solar still in Bahrain, Renewable Energy, 29(12) (2004) 1935-1946.

Google Scholar

[20] M.M. Rahman, M.G. Rasul, M.M.K. Khan, Modeling and experimental investigation of a solar still integrated with a solar pond, Renewable Energy, 72 (2014) 26-35.

Google Scholar

[21] H. Al-Hinai, M. Al-Nassri, B. A. Jubran, Parametric investigation of a double-effect solar still in comparison with a single-effect solar still, Renewable Energy, 15(4) (2002) 415-421.

DOI: 10.1016/s0011-9164(02)00931-1

Google Scholar

[22] M. S. Mahmoud, A. K. Abdel-Rahman, Solar stills integrated with solar ponds for brine treatment and salt recovery: A new concept, Desalination, 221(1-3) (2008) 53-61.

Google Scholar

[23] P. Pal, A. Yadav, Optimization of solar pond and solar still for water desalination, Desalination, 409 (2017) 53-61.

Google Scholar

[24] S. Shanmugan, S. Rajendran, Experimental investigation on a solar still coupled with a solar pond for enhanced water production, Desalination and Water Treatment, 54(1) (2015) 115-122.

Google Scholar

[25] A. N. Rao, T. Subramanian, Optimization of a solar still using the Taguchi method, International Journal of Ambient Energy, 37(4) (2016) 352-357.

Google Scholar

[26] N. H. Abu-Hamdeh, S. A. Alghannam, Numerical and experimental study of a solar still with a built-in solar pond, Energy Conversion and Management, 87 (2014) 1005-1015.

Google Scholar

[27] A.E. Kabeel, E. M. S. El-Said, Applicability of solar still for brine water desalination using solar pond, Desalination, 319 (2013) 56-64.

DOI: 10.1016/j.desal.2013.04.016

Google Scholar

[28] R. Nandi, J. H. Lienhard, Optimization of single-effect solar stills using entropy generation minimization, Solar Energy, 174 (2018) 1021-1032.

Google Scholar

[29] C. Elango, K. K. Murugavel, Performance analysis of solar still integrated with solar pond, Desalination, 373 (2015) 23-29.

Google Scholar

[30] G.M. Ayoub, L. Malaeb, An assessment of solar still desalination potentials in Lebanon, Renewable Energy, 62 (2014) 48-57.

Google Scholar

[31] M. Ahmed, F. M. Hussein, The influence of solar pond integration on solar still productivity, Desalination, 365 (2015) 146-151.

Google Scholar

[32] K. Kalidasa Murugavel, K. Chockalingam, Thermal performance analysis of solar stills integrated with mini solar ponds, Energy Procedia, 117 (2017) 130-137.

Google Scholar

[33] S. Dhiman, A. Akbarzadeh, Enhancing the efficiency of solar stills using solar ponds and other concentrative technologies, Renewable Energy, 119 (2018) 1-10.

Google Scholar

[34] L. Garcia-Rodriguez, C. Gomez-Camacho, Experimental study of a solar pond coupled with a desalination system, Desalination, 137(1-3) (2001) 259-265.

Google Scholar

[35] N. M. Al-Najem, M. H. Al-Mutairi, Thermal performance of a solar pond with integrated solar still for water desalination, Desalination and Water Treatment, 164 (2019) 134-140.

Google Scholar

[36] H.A. Habeeb, S. N. Fawzi, improving solar still productivity using solar ponds: A simulation study, Renewable Energy, 85 (2016) 1-9.

Google Scholar

[37] S.A. El-Agouz, A.E. Kabeel, Experimental study of stepped solar still with a built-in solar pond, Desalination, 341 (2014) 26-34.

Google Scholar

[38] R. Singh, G. N. Tiwari, Thermal performance of a solar still integrated with a solar pond, Desalination, 169(1) (2004) 11-23.

Google Scholar

[39] T. Rajaseenivasan, K. Srithar, Optimizing the performance of a solar still integrated with a solar pond using the Taguchi method, Journal of Cleaner Production, 137 (2016) 71-82.

Google Scholar

[40] Obai Younis, Ahmed Kadhim Hussein, Mohammed El Hadi Attia, Hakim S. Sultan Aljibori, Lioua Kolsi, Hussein Togun, Bagh Ali, Aissa Abderrahmane, Khanyaluck Subkrajang, and Anuwat Jirawattanapanit, Comprehensive Review on Solar Stills—Latest Developments and Overview, Sustainability, 14 (2022) 10136.

DOI: 10.3390/su141610136

Google Scholar

[41] M. Yuvaperiyasamy, N. Senthilkumar, B. Deepanraj, Experimental and Theoretical Analysis of Solar Still with Solar Pond for Enhancing the Performance of Sea Water Desalination, Water Reuse, 13(4) (2023) 620–633.

DOI: 10.2166/wrd.2023.102

Google Scholar

[42] P. Dumka, D.R. Mishra, An Estimation of the Distillate Output from A CSS Based On Multivariable Regression Analysis, International Journal of Ambient Energy, 43 (1) (2022) 2417-2422.

DOI: 10.1080/01430750.2020.1736625

Google Scholar

[43] M.K.B. Cardoso, K.S. da Silva, C.B. Silva, G.G.C. de Lima, K. M. de Medeiros, C.A.P. de Lima, Low-cost solar still with corrugated absorber basin for water desalination. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44 (5) (2022) 214.

DOI: 10.1007/s40430-022-03520-z

Google Scholar