Extraction and Performance of Novel Lignocellulose from Agro-Wastes: Synergistic Integration of Waste into Ecofriendly Polymer Composites

Article Preview

Abstract:

This research focuses on reusing waste materials to reduce the demand for fresh raw materials, thereby preserving natural resources. This approach also minimizes the energy and greenhouse gas emissions of extracting and manufacturing raw materials. We are developing eco-friendly, versatile polymer composites, aligning with the circular economy movement's goals of promoting sustainable resource utilization and waste minimization through closed-loop product life cycles. This research uses a hybrid polymer reinforced with lignocellulose agro-fibers (LCAF) from vegetable waste residues. Three different agro-wastes, such as orange peels, jute, and palmyra fruit peduncle, have been used. It investigates two phases, initially different fiber ratios from 3 to 12% and varying fiber lengths from 5 to 20 mm in the secondary phase, respectively. The LCAF is obtained through mechanical and chemical pre-treatment to enhance its properties for use in food packaging. The fiber containing 9% LCAF demonstrated a superior hardness and tensile strength of 118 BHN and 63 MPa compared to the polyester matrix. The water absorption improved from 2.03% to 4.76%, depending on the type of raw material and pre-treatment used to produce the LCAFs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-56

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Su, Z. Jiang, C. Fang, M. Yang, L. Wu, Z. Huang, The reinforcing effect of waste polyester fiber on recycled polyethylene, Polymers. 14 (2022) 3109.

DOI: 10.3390/polym14153109

Google Scholar

[2] B. De, M. Bera, D. Bhattacharjee, B.C. Ray, S. Mukherjee, A comprehensive review on fiber-reinforced polymer composites: Raw materials to applications, recycling, and waste management, Progress in Mater. Sci. (2024) 101326.

DOI: 10.1016/j.pmatsci.2024.101326

Google Scholar

[3] X. Zhao, A. Cavaco-Paulo, C. Silva, Biosynthesis of polyesters and their application on cellulosic fibers, InAdvances in textile biotech. Woodhead Publishing, (2019) pp.49-75.

DOI: 10.1016/b978-0-08-102632-8.00004-9

Google Scholar

[4] S.L. Loo, E. Yu, X. Hu, Tackling critical challenges in textile circularity: a review on strategies for recycling cellulose and polyester from blended fabrics, J. Env. Chemical Eng. (2023) 110482.

DOI: 10.1016/j.jece.2023.110482

Google Scholar

[5] B. Vinod, F.A. Raju, U. Elaiyarasan, S. Suresh, Enhancement of Dynamic and Tribological Characteristics of Epoxy Coating: Eco-friendly and Noval Biodegradable Fillers into Raw Materials, J. Bio-and Tribo-Corros. 10 (2024) 23.

DOI: 10.1007/s40735-024-00829-1

Google Scholar

[6] C. Subharaj, K. Logesh, S.J. Gnanaraj, M. Appadurai, P.M. Vimalan, Design and development of Palmyra fruit pulp production equipment through sustainable approach, Mater. Today: Proceed. 68 (2022) 1762-8.

DOI: 10.1016/j.matpr.2022.09.456

Google Scholar

[7] G.F. Silva, B.A. Silva, D. Sanglard, R.L. Domingos, M.F. Gonçalves, H.M. Cardoso, L.A. Cardoso, T.S. Pereira, B.C. Maia, S.K. Brito, L.T. Martins, Performance and gut permeability of post-weaned piglets are influenced by different sources of lignocellulose fiber, Livestock Sci. 274 (2023) 105274.

DOI: 10.1016/j.livsci.2023.105274

Google Scholar

[8] E. Kaya, K. Kılıçay, Compression molding method for alumina-reinforced UHMWPE-based composites, InModern Manuf. Processes for Aircraft Mater. (2024) 29-42.

DOI: 10.1016/b978-0-323-95318-4.00002-1

Google Scholar

[9] A.J. Thomas, E. Barocio, I. Bilionis, R.B. Pipes, Bayesian inference of fiber orientation and polymer properties in short fiber-reinforced polymer composites, Comp. Sci. and Tech. 228 (2022) 109630.

DOI: 10.1016/j.compscitech.2022.109630

Google Scholar

[10] S. Magibalan, N. Naveen, N. Pradeep, G. Vijayakumar, Experimental investigations on mechanical properties of sisal and coir fiber reinforced hybrid bio composites, Mater. Today: Proceed. (2023) 3-8.

DOI: 10.1016/j.matpr.2023.12.039

Google Scholar

[11] P. Gañán, J. Barajas, R. Zuluaga, C. Castro, D. Marín, A. Tercjak, D.H. Builes, The evolution and future trends of unsaturated polyester biocomposites: A bibliometric analysis, Polymers. 15 (2023) 2970.

DOI: 10.3390/polym15132970

Google Scholar

[12] V. Núñez-Gómez, M.J. Periago, J.L. Ordóñez-Díaz, G. Pereira-Caro, J.M. Moreno-Rojas, R. González-Barrio, Dietary fibre fractions rich in (poly) phenols from orange by-products and their metabolisation by in vitro digestion and colonic fermentation, Food Research Inter. 177 (2024) 113718.

DOI: 10.1016/j.foodres.2023.113718

Google Scholar

[13] R.A. Mohammed, M.S. Attallah, A.Q. Hadi, Erosive Wear Behavior of Jute Fiber/Polyester resin with Biowaste Materials, InIOP Conference Series: Mater. Sci. and Eng. 881 (2020) 012100.

DOI: 10.1088/1757-899x/881/1/012100

Google Scholar

[14] T.R. Krishnaveni, R. Arunachalam, M. Chandrakumar, G. Parthasarathi, R. Nisha, Potential review on palmyra (Borassus Flabellifer L.), Adv. in Res. 21 (2020) 29-40.

DOI: 10.9734/air/2020/v21i930229

Google Scholar

[15] C.A. Grubb, D.J. Keffer, C.D. Webb, M. Kardos, H. Mainka, D.P. Harper, Paper fiber-reinforced polypropylene composites from nonwoven preforms: A study on compression molding optimization from a manufacturing perspective, Composites Part A: App. Sci. and Manuf. (2024) 108339.

DOI: 10.1016/j.compositesa.2024.108339

Google Scholar

[16] R.B. Yusoff, H. Takagi, A.N. Nakagaito, A comparative study of polylactic acid (PLA)-Based unidirectional green hybrid composites reinforced with natural fibers such as kenaf, bamboo and coir, Hybrid Adv. 3 (2023) 100073.

DOI: 10.1016/j.hybadv.2023.100073

Google Scholar

[17] B. Vinod, S. Suresh, S.S. Reddy, D. Sudhakara, Preparation and Characterization of Hybrid Composite Polyethylene fibers: Novel Catalyst in Treatment of Medical Waste, J. The Inst. of Eng. (India): Series D. (2023) 1-4.

DOI: 10.1007/s40033-023-00522-6

Google Scholar

[18] R.S. Chidhananda, S.D. Prakash, P. Nireeksha, S.R. Mungara, A study on hardness and thermal properties of fibre based particulate polymer composites, Mater. Today: Proceed. 47 (2021) 4495-501.

DOI: 10.1016/j.matpr.2021.05.328

Google Scholar

[19] J. Li, L. Yang, H. Xie, P. Wei, D. Li, Y. Xu, F. Zhang, Research on impact toughness and crack propagation of basalt fiber reinforced concrete under SHPB splitting test, J. Building Eng. 77 (2023) 107445.

DOI: 10.1016/j.jobe.2023.107445

Google Scholar

[20] L. Sharma, L. Ye, C. Yong, R. Seetharaman, K. Kho, W. Surya, R. Wang, J. Torres, Aquaporin-based membranes made by interfacial polymerization in hollow fibers: Visualization and role of aquaporin in water permeability, J. Membrane Sci. 654 (2022) 120551.

DOI: 10.1016/j.memsci.2022.120551

Google Scholar

[21] M.J. Siddiqui, P.K. Balguri, K. Haripriya, A.R. Rajendran, Patil IV, Analysis of type IV hydrogen pressure vessel with S-glass, Carbon fiber T700 and Kevlar composite materials, Mater. Today: Proceed. (2023) 6-11.

DOI: 10.1016/j.matpr.2023.09.036

Google Scholar

[22] K. Ganesan, C. Kailasanathan, N. Rajini, S.O. Ismail, N. Ayrilmis, F. Mohammad, H.A. Al-Lohedan, A.M. Tawfeek, Z.A. Issa, D.M. Aldhayan, Assessment on hybrid jute/coir fibers reinforced polyester composite with hybrid fillers under different environmental conditions, Const. and Building Mater. 301 (2021) 124117.

DOI: 10.1016/j.conbuildmat.2021.124117

Google Scholar

[23] B. Vinod, S. Suresh, S.S. Reddy, D. Sudhakara, U.U. Elaiyarasan, Synthesis of alfa (Stipa tenacissima L.)/hemp fiber-reinforced UHMWPE: impact of fibers on mechanical, microstructural and aspect properties, J. The Inst. of Eng. (India): Series D. 103 (2022) 611-20.

DOI: 10.1007/s40033-022-00357-7

Google Scholar

[24] S.S. Yusuf, N. Islam, H. Ali, W. Akram, A. Siddique, Optimum process parameters selection for Brinell hardness number of natural fiber reinforced composites using Taguchi method, Saudi J. Eng. Technol. 4 (2019) 422-7.

DOI: 10.36348/sjeat.2019.v04i10.005

Google Scholar

[25] G.D. Maradini, M.P. Oliveira, L.G. Carreira, D. Guimarães, D. Profeti, A.F. Dias Júnior, W.T. Boschetti, B.F. Oliveira, A.C. Pereira, S.N. Monteiro, Impact and tensile properties of polyester nanocomposites reinforced with conifer fiber cellulose nanocrystal: A previous study extension, Polymers. 13 (2021) 1878.

DOI: 10.3390/polym13111878

Google Scholar

[26] N.H. Mostafa, M.B. Hunain, A. Jassim, Mechanical properties of the Jute fibers-activated carbon filled reinforced polyester composites, Mater. Res. Express. 6 (2019) 125104.

DOI: 10.1088/2053-1591/ab5566

Google Scholar

[27] G. Kannan, R. Thangaraju, Evaluation of tensile, flexural and thermal characteristics on agro-waste based polymer composites reinforced with banana fiber/coconut shell filler, J. Natural Fibers. 20 (2023) 2154630.

DOI: 10.1080/15440478.2022.2154630

Google Scholar

[28] D. Pantaloni, A. Bourmaud, C. Baley, M.J. Clifford, M.H. Ramage, D.U. Shah, A review of permeability and flow simulation for liquid composite moulding of plant fibre composites, Materials. 13 (2020) 4811.

DOI: 10.3390/ma13214811

Google Scholar

[29] B. Vinod, S. Suresh, S.S. Reddy, K.S. Sujith, Synthesis and characterization of PET impregnated agro-medical waste: Novel approach for plastic substitute using hybrid composites, Mater. Today: Proceed. 98 (2024) 54-62.

DOI: 10.1016/j.matpr.2023.09.056

Google Scholar

[30] B. Biswas, N.R. Bandyopadhyay, N. Mukherjee, A. Sinha, Mechanical behaviour of jute/ZrO 2 based polyester composites at microstructural scale, Fibers and Poly. 22 (2021) 1731-42.

DOI: 10.1007/s12221-021-0114-y

Google Scholar