[1]
J. Su, Z. Jiang, C. Fang, M. Yang, L. Wu, Z. Huang, The reinforcing effect of waste polyester fiber on recycled polyethylene, Polymers. 14 (2022) 3109.
DOI: 10.3390/polym14153109
Google Scholar
[2]
B. De, M. Bera, D. Bhattacharjee, B.C. Ray, S. Mukherjee, A comprehensive review on fiber-reinforced polymer composites: Raw materials to applications, recycling, and waste management, Progress in Mater. Sci. (2024) 101326.
DOI: 10.1016/j.pmatsci.2024.101326
Google Scholar
[3]
X. Zhao, A. Cavaco-Paulo, C. Silva, Biosynthesis of polyesters and their application on cellulosic fibers, InAdvances in textile biotech. Woodhead Publishing, (2019) pp.49-75.
DOI: 10.1016/b978-0-08-102632-8.00004-9
Google Scholar
[4]
S.L. Loo, E. Yu, X. Hu, Tackling critical challenges in textile circularity: a review on strategies for recycling cellulose and polyester from blended fabrics, J. Env. Chemical Eng. (2023) 110482.
DOI: 10.1016/j.jece.2023.110482
Google Scholar
[5]
B. Vinod, F.A. Raju, U. Elaiyarasan, S. Suresh, Enhancement of Dynamic and Tribological Characteristics of Epoxy Coating: Eco-friendly and Noval Biodegradable Fillers into Raw Materials, J. Bio-and Tribo-Corros. 10 (2024) 23.
DOI: 10.1007/s40735-024-00829-1
Google Scholar
[6]
C. Subharaj, K. Logesh, S.J. Gnanaraj, M. Appadurai, P.M. Vimalan, Design and development of Palmyra fruit pulp production equipment through sustainable approach, Mater. Today: Proceed. 68 (2022) 1762-8.
DOI: 10.1016/j.matpr.2022.09.456
Google Scholar
[7]
G.F. Silva, B.A. Silva, D. Sanglard, R.L. Domingos, M.F. Gonçalves, H.M. Cardoso, L.A. Cardoso, T.S. Pereira, B.C. Maia, S.K. Brito, L.T. Martins, Performance and gut permeability of post-weaned piglets are influenced by different sources of lignocellulose fiber, Livestock Sci. 274 (2023) 105274.
DOI: 10.1016/j.livsci.2023.105274
Google Scholar
[8]
E. Kaya, K. Kılıçay, Compression molding method for alumina-reinforced UHMWPE-based composites, InModern Manuf. Processes for Aircraft Mater. (2024) 29-42.
DOI: 10.1016/b978-0-323-95318-4.00002-1
Google Scholar
[9]
A.J. Thomas, E. Barocio, I. Bilionis, R.B. Pipes, Bayesian inference of fiber orientation and polymer properties in short fiber-reinforced polymer composites, Comp. Sci. and Tech. 228 (2022) 109630.
DOI: 10.1016/j.compscitech.2022.109630
Google Scholar
[10]
S. Magibalan, N. Naveen, N. Pradeep, G. Vijayakumar, Experimental investigations on mechanical properties of sisal and coir fiber reinforced hybrid bio composites, Mater. Today: Proceed. (2023) 3-8.
DOI: 10.1016/j.matpr.2023.12.039
Google Scholar
[11]
P. Gañán, J. Barajas, R. Zuluaga, C. Castro, D. Marín, A. Tercjak, D.H. Builes, The evolution and future trends of unsaturated polyester biocomposites: A bibliometric analysis, Polymers. 15 (2023) 2970.
DOI: 10.3390/polym15132970
Google Scholar
[12]
V. Núñez-Gómez, M.J. Periago, J.L. Ordóñez-Díaz, G. Pereira-Caro, J.M. Moreno-Rojas, R. González-Barrio, Dietary fibre fractions rich in (poly) phenols from orange by-products and their metabolisation by in vitro digestion and colonic fermentation, Food Research Inter. 177 (2024) 113718.
DOI: 10.1016/j.foodres.2023.113718
Google Scholar
[13]
R.A. Mohammed, M.S. Attallah, A.Q. Hadi, Erosive Wear Behavior of Jute Fiber/Polyester resin with Biowaste Materials, InIOP Conference Series: Mater. Sci. and Eng. 881 (2020) 012100.
DOI: 10.1088/1757-899x/881/1/012100
Google Scholar
[14]
T.R. Krishnaveni, R. Arunachalam, M. Chandrakumar, G. Parthasarathi, R. Nisha, Potential review on palmyra (Borassus Flabellifer L.), Adv. in Res. 21 (2020) 29-40.
DOI: 10.9734/air/2020/v21i930229
Google Scholar
[15]
C.A. Grubb, D.J. Keffer, C.D. Webb, M. Kardos, H. Mainka, D.P. Harper, Paper fiber-reinforced polypropylene composites from nonwoven preforms: A study on compression molding optimization from a manufacturing perspective, Composites Part A: App. Sci. and Manuf. (2024) 108339.
DOI: 10.1016/j.compositesa.2024.108339
Google Scholar
[16]
R.B. Yusoff, H. Takagi, A.N. Nakagaito, A comparative study of polylactic acid (PLA)-Based unidirectional green hybrid composites reinforced with natural fibers such as kenaf, bamboo and coir, Hybrid Adv. 3 (2023) 100073.
DOI: 10.1016/j.hybadv.2023.100073
Google Scholar
[17]
B. Vinod, S. Suresh, S.S. Reddy, D. Sudhakara, Preparation and Characterization of Hybrid Composite Polyethylene fibers: Novel Catalyst in Treatment of Medical Waste, J. The Inst. of Eng. (India): Series D. (2023) 1-4.
DOI: 10.1007/s40033-023-00522-6
Google Scholar
[18]
R.S. Chidhananda, S.D. Prakash, P. Nireeksha, S.R. Mungara, A study on hardness and thermal properties of fibre based particulate polymer composites, Mater. Today: Proceed. 47 (2021) 4495-501.
DOI: 10.1016/j.matpr.2021.05.328
Google Scholar
[19]
J. Li, L. Yang, H. Xie, P. Wei, D. Li, Y. Xu, F. Zhang, Research on impact toughness and crack propagation of basalt fiber reinforced concrete under SHPB splitting test, J. Building Eng. 77 (2023) 107445.
DOI: 10.1016/j.jobe.2023.107445
Google Scholar
[20]
L. Sharma, L. Ye, C. Yong, R. Seetharaman, K. Kho, W. Surya, R. Wang, J. Torres, Aquaporin-based membranes made by interfacial polymerization in hollow fibers: Visualization and role of aquaporin in water permeability, J. Membrane Sci. 654 (2022) 120551.
DOI: 10.1016/j.memsci.2022.120551
Google Scholar
[21]
M.J. Siddiqui, P.K. Balguri, K. Haripriya, A.R. Rajendran, Patil IV, Analysis of type IV hydrogen pressure vessel with S-glass, Carbon fiber T700 and Kevlar composite materials, Mater. Today: Proceed. (2023) 6-11.
DOI: 10.1016/j.matpr.2023.09.036
Google Scholar
[22]
K. Ganesan, C. Kailasanathan, N. Rajini, S.O. Ismail, N. Ayrilmis, F. Mohammad, H.A. Al-Lohedan, A.M. Tawfeek, Z.A. Issa, D.M. Aldhayan, Assessment on hybrid jute/coir fibers reinforced polyester composite with hybrid fillers under different environmental conditions, Const. and Building Mater. 301 (2021) 124117.
DOI: 10.1016/j.conbuildmat.2021.124117
Google Scholar
[23]
B. Vinod, S. Suresh, S.S. Reddy, D. Sudhakara, U.U. Elaiyarasan, Synthesis of alfa (Stipa tenacissima L.)/hemp fiber-reinforced UHMWPE: impact of fibers on mechanical, microstructural and aspect properties, J. The Inst. of Eng. (India): Series D. 103 (2022) 611-20.
DOI: 10.1007/s40033-022-00357-7
Google Scholar
[24]
S.S. Yusuf, N. Islam, H. Ali, W. Akram, A. Siddique, Optimum process parameters selection for Brinell hardness number of natural fiber reinforced composites using Taguchi method, Saudi J. Eng. Technol. 4 (2019) 422-7.
DOI: 10.36348/sjeat.2019.v04i10.005
Google Scholar
[25]
G.D. Maradini, M.P. Oliveira, L.G. Carreira, D. Guimarães, D. Profeti, A.F. Dias Júnior, W.T. Boschetti, B.F. Oliveira, A.C. Pereira, S.N. Monteiro, Impact and tensile properties of polyester nanocomposites reinforced with conifer fiber cellulose nanocrystal: A previous study extension, Polymers. 13 (2021) 1878.
DOI: 10.3390/polym13111878
Google Scholar
[26]
N.H. Mostafa, M.B. Hunain, A. Jassim, Mechanical properties of the Jute fibers-activated carbon filled reinforced polyester composites, Mater. Res. Express. 6 (2019) 125104.
DOI: 10.1088/2053-1591/ab5566
Google Scholar
[27]
G. Kannan, R. Thangaraju, Evaluation of tensile, flexural and thermal characteristics on agro-waste based polymer composites reinforced with banana fiber/coconut shell filler, J. Natural Fibers. 20 (2023) 2154630.
DOI: 10.1080/15440478.2022.2154630
Google Scholar
[28]
D. Pantaloni, A. Bourmaud, C. Baley, M.J. Clifford, M.H. Ramage, D.U. Shah, A review of permeability and flow simulation for liquid composite moulding of plant fibre composites, Materials. 13 (2020) 4811.
DOI: 10.3390/ma13214811
Google Scholar
[29]
B. Vinod, S. Suresh, S.S. Reddy, K.S. Sujith, Synthesis and characterization of PET impregnated agro-medical waste: Novel approach for plastic substitute using hybrid composites, Mater. Today: Proceed. 98 (2024) 54-62.
DOI: 10.1016/j.matpr.2023.09.056
Google Scholar
[30]
B. Biswas, N.R. Bandyopadhyay, N. Mukherjee, A. Sinha, Mechanical behaviour of jute/ZrO 2 based polyester composites at microstructural scale, Fibers and Poly. 22 (2021) 1731-42.
DOI: 10.1007/s12221-021-0114-y
Google Scholar