The Occurrence of Titanium Carbide in Ti-Alloyed Gray Iron

Article Preview

Abstract:

This study investigates the formation and distribution of titanium carbide (TiC) in gray iron with varying titanium (Ti). Gray cast iron samples were produced with Ti levels ranging from 0.033 to 0.349 wt% using a 100-kg induction furnace. The microstructures of the samples were examined using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS), showing that TiC particles are the predominant TCCs in this study. It was found that TiC particles were dispersed around graphite and matrix structures. The number of TiC increased with Ti. The Gibbs free energy calculations supported the formation of TiC both in molten and solid states.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-88

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.R. Martin, J.R. Moreno and A.D. Vicente, Acta Scientiarum-tech. 37 (2015) pp.355-360.

Google Scholar

[2] V. Fourlakidis, V. Diaconu, and A. Diószegi, Mat. Sci. Forum 649 (2010) pp.511-516.

Google Scholar

[3] W. Xu, M.P. Ferry and Y. Wang, Mat. Sci. Eng. A 390 (2005) pp.326-333.

Google Scholar

[4] P. Larranaga, J. Sertucha, A. Loizaga, R. Suarez, D.M. Stefanescu, Trans. AFS. 120 (2012) paper 12-033.

Google Scholar

[5] P. Larranaga, J. Sertucha, A. Loizaga, R. Suarez, D.M. Stefanescu, Trans. AFS. 120 (2012) paper 12-034.

Google Scholar

[6] P. Larranaga, J. Sertucha, A. Loizaga, R. Suarez, D.M. Stefanescu, Trans. AFS. 120 (2012) paper 12-035.

Google Scholar

[7] D. Zeng, Y. Zhang, J. Liu, H. He, X. Hong, Tsinghua Sci. & Tech. 13 (2008) pp.127-131.

Google Scholar

[8] E. Moumeni, N.S. Tiedje and J.H. Hattel, Proceedings of the 12th International Foundrymen Conference, Croatia, (2016).

Google Scholar

[9] E. Moumeni, D.M. Stefanescu, N.S. Tiedje, P. Larrañaga and J.H. Hattel, Metall. and Mater. Trans. A, 44 (2013) pp.5134-5146.

DOI: 10.1007/s11661-013-1897-2

Google Scholar

[10] V. Aulin, V. Kropivny, O. Kuzyk, O. Lyashuk, M. Bosyi, Y. Vovk, A. Kropivna, M.A. Sokol, A. Senyk and L. Slobodyan, Tribology in Industry 43 (2021). pp.654-666.

DOI: 10.24874/ti.1081.03.21.10

Google Scholar

[11] A. Sommerfeld and B. Tonn, Inter. J. of Metalcast 3 (2009) pp.39-47.

Google Scholar

[12] S. Boonmee, K. Worakhut and P. Maneelum, Mat. Sci. Forum 987 (2020) p.177–181.

DOI: 10.4028/www.scientific.net/msf.987.177

Google Scholar

[13] S.R. Shatynski, Oxidation of Metals 13 (1979) pp.105-118.

Google Scholar

[14] S.R. Shatynski, Oxidation of Metals 11 (1977) p.307–320.

Google Scholar

[15] D. Bouchard and C.W. Bale, Metall. And Mater. Trans. B, 26 (1995), pp.467-484.

Google Scholar

[16] E.T. Turkdogan, Physical Chemistry of High Temperature Technology, Academic Press, New york, 1980.

Google Scholar