Influence of Green-Synthesized Fe3O4/ PEG Nanocomposite Concentration on Photodegradation of Methylene Blue

Article Preview

Abstract:

Research has been conducted on Fe₃O₄/PEG material applied as a photocatalyst. This research is motivated by the many textile industries that pollute the environment with their liquid waste disposal. The purpose of this research is to analyze the effect of concentration variation of Fe₃O₄/PEG nanocomposites that are green synthesized using Moringa oleifera extract on the photodegradation efficiency of Methylene Blue (MB) dye in water. The nanocomposites formed were then characterized through several techniques, including X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, Vibrating Sample Magnetometer, and Ultraviolet-Visible (UV-Vis) spectrophotometry. Afterwards, the nanocomposites were tested in the MB photocatalytic process with various concentration to determine their effect on the degradation efficiency under UV irradiation. The material characterization results show that the nanocomposites has an inverse spinel cubic crystal structure with a crystallite size of 15.93±0.03 nm, and a lattice parameter of 8.17 Å. UV-Vis analysis showed an absorption peak at a wavelength of 322 nm with a direct energy band gap of 3.8 eV, and properties towards superparamagnetic with a saturation magnetization of 49.9 emu/g. Photocatalytic tests showed an increase in efficiency as the catalyst concentration increased, reaching the highest degradation of 68.2% at a mass of 0.09g. Therefore, this nanocomposite has potential as a photocatalyst.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-117

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Rybalova, O., Artemiev, S., Sarapina, M., Tsymbal, B., Bakharevа, A., Shestopalov, O., & Filenko, O. (2018). Development of methods for estimating the environmental risk of degradation of the surface water state. Восточно-Европейский журнал передовых технологий, (2 (10)), 4-17.

DOI: 10.15587/1729-4061.2018.127829

Google Scholar

[2] S. Sahu, S. Pahi, J. K. Sahu, U. K. Sahu and R. K. Patel, Environ. Sci. Pollut. Res. 27 (2020) 22579–22592.

DOI: 10.1007/s11356-020-08561-2

Google Scholar

[3] S. Kumar Tammina, B. Kumar Mandal, N. Kanth Kadiyala, Photocatalytic degradation of methylene blue dye by nonconventional synthesized SnO2 nanoparticles. 2018.

DOI: 10.1016/j.enmm.2018.07.006

Google Scholar

[4] Charerntanyarak, L. (1999). Heavy metals removal by chemical coagulation and precipitation. Water Science and Technology, 39(10-11), 135-138.

DOI: 10.2166/wst.1999.0642

Google Scholar

[5] K. Piaskowski, R. Świderska-Dąbrowska, P.K. Zarzycki, "Dye removal from water andwastewater using various physical, chemical, and biological processes," J. AOAC Int., vol. 101, p.1371–1384, 2018.

DOI: 10.5740/jaoacint.18-0051

Google Scholar

[6] Oladoye, P. O., Ajiboye, T. O., Omotola, E. O., & Oyewola, O. J. (2022). Methylene bluedye: Toxicity and potential elimination technology from wastewater. Results in Engineering, 16, 100678.

DOI: 10.1016/j.rineng.2022.100678

Google Scholar

[7] R. Wang et al., Fe3O4/SiO2/C nanocomposite as a high-performance Fenton-like catalyst in aneutral environment, RSC Adv. 6 (2016) 8594–8600

Google Scholar

[8] Rajabathar, J. R., Thankappan, R., Sutha, A., Al-Lohedan, H., Karami, A. M., Kumar, S. A., ... & Balu, R. (2024). Enhanced photocatalytic activity of magnetite/titanate (Fe3O4/TiO2) nanocomposite for methylene blue dye degradation under direct sunlight. Optical Materials, 148, 114820.

DOI: 10.1016/j.optmat.2023.114820

Google Scholar

[9] Sudarmono, Istiqomah, N. I., Budianti, S. I., Cuana, R., Puspitarum, D. L., Mahardhika, L. J., & Suharyadi, E. (2024). Magnetically separable and reusable Fe3O4/chitosan.

DOI: 10.1016/j.rechem.2023.101245

Google Scholar

[10] Liu, S., Yu, B., Wang, S., Shen, Y., & Cong, H. (2020). Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Advances in colloid and Interface Science, 281, 102165.

DOI: 10.1016/j.cis.2020.102165

Google Scholar

[11] Antarnusa, G., Jayanti, P. D., Denny, Y. R., & Suherman, A. (2022). Utilization of co-precipitation method on synthesis of Fe3O4/PEG with different concentrations of PEG for biosensor applications. Materialia, 25, 101525.

DOI: 10.1016/j.mtla.2022.101525

Google Scholar

[12] Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of photochemistry and photobiology C: Photochemistry Reviews, 13(3), 169-189.

DOI: 10.1016/j.jphotochemrev.2012.06.001

Google Scholar

[13] Higashimoto, S. (2019). Titanium-dioxide-based visible-light-sensitive photocatalysis: Mechanistic insight and applications. Catalysts, 9(2), 201.

DOI: 10.3390/catal9020201

Google Scholar

[14] Xuan, S., Jiang, W., Gong, X., Hu, Y., & Chen, Z. (2009). Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity. The Journal of Physical Chemistry C, 113(2), 553-558.

DOI: 10.1021/jp8073859

Google Scholar

[15] Tumbelaka, R. M., Istiqomah, N. I., Kato, T., Oshima, D., & Suharyadi, E. (2022). High reusability of green-synthesized Fe3O4/TiO2 photocatalyst nanoparticles for efficient degradation of methylene blue dye. Materials Today Communications, 33, 104450.

DOI: 10.1016/j.mtcomm.2022.104450

Google Scholar

[16] Akram, N., Shah, S. T., Abdelrazek, A. H., Khan, A., Kazi, S. N., Sadri, R., ... & Soudagar, M. E. M. (2023). Application of PEG- Fe3O4 nanofluid in flat-plate solar collector: An experimental investigation. Solar Energy Materials and Solar Cells, 263, 112566.

DOI: 10.1016/j.solmat.2023.112566

Google Scholar

[17] Dhillon, G. S., Brar, S. K., Kaur, S., & Verma, M. (2012). Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Critical reviews in biotechnology, 32(1), 49-73.

DOI: 10.3109/07388551.2010.550568

Google Scholar

[18] Suttirak W, Manurakchinakorn S. In vitro antioxidant properties of mangosteen peel extract. J Food Sci Technol. 2014;51(12):3546–3558

DOI: 10.1007/s13197-012-0887-5

Google Scholar

[19] Yew, Y. P., Shameli, K., Mohamad, S. E. B., Nagao, Y., Teow, S. Y., Lee, K. X., & Isa, E. D. M. (2019). Potential anticancer activity of protocatechuic acid loaded in montmorillonite/Fe3O4 nanocomposites stabilized by seaweed Kappaphycus alvarezii. International Journal of Pharmaceutics, 572, 118743.

DOI: 10.1016/j.ijpharm.2019.118743

Google Scholar

[20] Yusefi, M., Shameli, K., Ali, R. R., Pang, S. W., & Teow, S. Y. (2020). Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica granatum fruit peel extract. Journal of Molecular Structure, 1204, 127539.

DOI: 10.1016/j.molstruc.2019.127539

Google Scholar

[21] Jayanti, P. D., Mahardhika, L. J., Kusumah, H. P., Ardiyanti, H., Wibowo, N. A., Istiqomah, N. I., ... & Suharyadi, E. (2024). Real-time biomolecule detection using GMR chip-based sensor with green-synthesized Fe3O4/rGO nanocomposites as magnetic labels. Sensors and Actuators A: Physical, 375, 115493.

DOI: 10.1016/j.sna.2024.115493

Google Scholar

[22] Mabarroh, N. M., Alfansuri, T., Istiqomah, N. I., Tumbelaka, R. M., & Suharyadi, E. (2022). GMR Biosensor Based on Spin-Valve Thin Films for Green-Synthesized Magnetite (Fe3O4) Nanoparticles Label Detection. Nano Hybrids and Composites, 37, 9-14.

DOI: 10.4028/p-v5gmkk

Google Scholar

[23] Sari, E. K., Tumbelaka, R. M., Ardiyanti, H., Istiqomah, N. I., & Suharyadi, E. (2023). Green synthesis of magnetically separable and reusable Fe3O4/Cdots nanocomposites photocatalyst utilizing Moringa oleifera extract and watermelon peel for rapid dye degradation. Carbon Resources Conversion, 6(4), 274-286.

DOI: 10.1016/j.crcon.2023.04.003

Google Scholar

[24] Wahyuni, S., Riswan, M., Adrianto, N., Dharmawan, M. Y., Tumbelaka, R. M., Cuana, R., ... & Suharyadi, E. (2023). Localized surface plasmon resonance properties dependence of green-synthesized Fe3O4/Ag composite nanoparticles on ag concentration and an electric field for biosensor application. Photonics and Nanostructures-Fundamentals and Applications, 57, 101191.

DOI: 10.1016/j.photonics.2023.101191

Google Scholar