Effect of Inhomogeneous Oxygen Distribution on Martensitic Transformation of β Phase in Ti-15at%Nb-1at%O Alloy

Article Preview

Abstract:

The quenched-in microstructures of Ti-15at%Nb-1at%O alloy after solid solution treatment (SST) in β phase for different SST times were investigated. In the as-rolled sample before SST, the α phase formed at the grain boundaries, and coarse martensite laths of α" phase formed in the grains. In the sample after SST for the time from 0.3 to 2.4 ks, a bundle-microstructure containing α" phase laths nucleating in the same crystallographical direction was formed. In the sample with SST for 4.8ks, the α" phase laths did not form in the area at a certain distance away from the grain boundaries, and the β+ω phase formed in that area. The rest of the areas were covered by the acicular laths of α" phase. The sample after SST for 10.8 ks exhibited the acicular laths of α" phase formed uniformly in the grains. The inhomogeneous oxygen distribution would significantly affect the microstructure formation of an oxygen-containing Ti-Nb alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-97

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Banerjee and J. C. Williams: Acta Mater. 61, 844 (2013).

Google Scholar

[2] C. Cui, B. M. Hu, L. Zhao, and S. Liu: Mater. Des. 32, 1684 (2011).

Google Scholar

[3] M. Peters, J. Kumpfert, C. H. Ward, and C. Leyens: Adv. Eng. Mater. 5, 419 (2003).

Google Scholar

[4] A. Loureiro, C. Veiga, J. P. Davim, and A. J. R. Loureiro: Reviees Adv. Mater. Sci. 32, 14 (2012).

Google Scholar

[5] I. Inagaki, T. Takechi, Y. Sharai, and N. Ariyasu: Nippon Steel Sumitomo Met. Tech. Rep. 22 (2014).

Google Scholar

[6] M. Niinomi: J. Japan Inst. Met. Mater 75, 21 (2011).

Google Scholar

[7] Y. Okazaki: Mater. Japan 37, 838 (1998).

Google Scholar

[8] Gunawarman, M. Niinomi, T. Akahori, T. Souma, M. Ikeda, H. Toda, and K. Terashima: Mater. Trans. 46, 1570 (2005).

DOI: 10.2320/matertrans.46.1570

Google Scholar

[9] K. Matsugi, T. Endo, Y. B. Choi, and G. Sasaki: Mater. Trans. 51, 740 (2010).

Google Scholar

[10] S. Kobayashi and S. Okano: Front. Bioeng. Biotechnol. 12, 1 (2024).

Google Scholar

[11] J. Il Kim, H. Y. Kim, H. Hosoda, and S. Miyazaki: Mater. Trans. 46, 852 (2005).

Google Scholar

[12] M. Tahara, T. Kanaya, H. Y. Kim, T. Inamura, H. Hosoda, and S. Miyazaki: Acta Mater. 80, 317 (2014).

Google Scholar

[13] E. G. Obbard, Y. L. Hao, R. J. Talling, S. J. Li, Y. W. Zhang, D. Dye, and R. Yang: Acta Mater. 59, 112 (2011).

Google Scholar

[14] Q. Li, D. Ma, J. Li, M. Niinomi, M. Nakai, Y. Koizumi, D. Wei, T. Kakeshita, T. Nakano, A. Chiba, K. Zhou and D. Pan: Mater. Trans. 59, 858 (2018).

DOI: 10.2320/matertrans.m2018021

Google Scholar

[15] M. Besse, P. Castany, and T. Gloriant: Acta Mater. 59, 5982 (2011).

Google Scholar

[16] S. Kawano, S. Kobayashi, and S. Okano: Mater. Trans. 60, 1842 (2019).

Google Scholar

[17] S. Kobayashi and S. Okano: Mater. Trans. 64, 71 (2023).

Google Scholar

[18] M. Niinomi, M. Nakai, M. Hendrickson, P. Nandwana, T. Alam, D. Choudhuri, and R. Banerjee: Scr. Mater. 123, 144 (2016).

Google Scholar

[19] T. Ida: J. Flux Growth 4, 2 (2009).

Google Scholar

[20] C. A. Schneider, W. S. Rasband, and K. W. Eliceiri: Nat. Methods 9, 671 (2012).

Google Scholar

[21] Y. Takayama: Keikinzoku/Journal Japan Inst. Light Met. 44, 48 (1994).

Google Scholar

[22] Y. Suwa: Nippon Steel Tech. Rep. 19 (2013).

Google Scholar

[23] M. Anwar Ali Anshari, M. Imam, M. Abdul Wahed, W. Raj Ilham, and R. Mishra: Mater. Today Proc. online (2023).

DOI: 10.1016/j.matpr.2023.08.104

Google Scholar

[24] D. Y. Zhang, Z. S. Nong, and T. X. Wang: Arch. Metall. Mater. 68, 869 (2023).

Google Scholar

[25] H. Nakajima and M. Koiwa: ISIJ Int. 31, 757 (1991).

Google Scholar