[1]
Martina Paldrychová, Eva Vaňková, Vladimír Scholtz, Jaroslav Julák, Eliška Sembolová, Olga Mat'átková, and Jan Masák (2019). Effect of non-thermal plasma on AHL-dependent QS systems and biofilm formation in Pseudomonas aeruginosa: Difference between non-hospital and clinical isolates. AIP Advances, 9, 055117
DOI: 10.1063/1.5090451
Google Scholar
[2]
Rezaei, F., Abbasi-Firouzjah, M., & Shokri, B. (2014). Investigation of antibacterial and wettability behaviours of plasma-modified PMMA films for application in ophthalmology. Journal of Physics D: Applied Physics, 47(8), 085401.
DOI: 10.1088/0022-3727/47/8/085401
Google Scholar
[3]
Sakudo, A., & Misawa, T. (2020). Antibiotic-resistant and non-resistant bacteria display similar susceptibility to dielectric barrier discharge plasma. International Journal of Molecular Sciences, 21(17), 6326.
DOI: 10.3390/ijms21176326
Google Scholar
[4]
Maho, T., Binois, R., Brulé-Morabito, F., Demasure, M., Douat, C., Dozias, S., Escot Bocanegra, P., Goard, I., Hocqueloux, L., Le Helloco, C., and Orel, I. (2021). Anti-bacterial action of plasma multi-jets in the context of chronic wound healing. Applied Sciences, 11(20), 9598.
DOI: 10.3390/app11209598
Google Scholar
[5]
Vijayarangan, Vinodini, Antony Delalande, Sébastien Dozias, J-M. Pouvesle, Eric Robert, and Chantal Pichon. (2020). New insights on molecular internalization and drug delivery following plasma jet exposures. International Journal of Pharmaceutics, 589, 119874.
DOI: 10.1016/j.ijpharm.2020.119874
Google Scholar
[6]
Bekeschus, S., Favia, P., Robert, E., & von Woedtke, T. (2019). White paper on plasma for medicine and hygiene: Future in plasma health sciences. Plasma Processes and Polymers, 16(1), 1800033.
DOI: 10.1002/ppap.201800033
Google Scholar
[7]
Ehlbeck, J., Schnabel, U., Polak, M., Winter, J., Von Woedtke, T., Brandenburg, R., et al. (2010). Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal of Physics D: Applied Physics, 44(1), 013002.
DOI: 10.1088/0022-3727/44/1/013002
Google Scholar
[8]
Gilmore, B. F., Flynn, P. B., O'Brien, S., Hickok, N., Freeman, T., & Bourke, P. (2018). Cold plasmas for biofilm control: opportunities and challenges. Trends in biotechnology, 36(6), 627-638.
DOI: 10.1016/j.tibtech.2018.03.007
Google Scholar
[9]
Fatma & Oflaz, Hakan & Ercan, Utku. (2016). Biofilm Inactivation and Prevention On Common Implant Material Surfaces by Non-Thermal DBD Plasma Treatment. Plasma Medicine, 6.
DOI: 10.1615/PlasmaMed.2016015846
Google Scholar
[10]
Vleugels, M., Shama, G., Deng, X. T., Greenacre, E., Brocklehurst, T., & Kong, M. G. (2005). Atmospheric Plasma Inactivation of Biofilm-Forming. Loughborough University Institutional Repository, 824-828.
DOI: 10.1109/tps.2005.844524
Google Scholar
[11]
M. Tatoulian, M. Bouloussa, F. Moriere, F. Arefi-Khonsari, J.Amouroux, F. Rondelez. Langmuir, 20, 10481.
DOI: 10.1021/la030378l
Google Scholar
[12]
Steen, M. L., Flory, W. C., Capps, N. E., & Fisher, E. R. (2001). Plasma modification of porous structures for formation of composite materials. Chemistry of materials, 13(9), 2749-2752.
DOI: 10.1021/cm010452q
Google Scholar
[13]
Giannakaris, Nikolaos, et al. "Surface cleaning with atmospheric pressure plasma jet investigated by in-situ optical emission spectroscopy and laser-induced breakdown spectroscopy." Applied Surface Science, 684 (2025): 161751.
DOI: 10.1016/j.apsusc.2024.161751
Google Scholar
[14]
Shang, H., Ning, W., Shen, S., Wang, R., Dai, D., & Jia, S. (2024). Atmospheric pressure plasma jet for surface treatment: a review. Reviews of Modern Plasma Physics, 9(1), 3.
DOI: 10.1007/s41614-024-00177-0
Google Scholar
[15]
Setiawan, U. H., I. F. Nurcahyo, and T. E. Saraswati. "Atmospheric pressure plasma jet for surface material modification: a mini-review." Journal of Physics: Conference Series, 2190.1 (2022)
DOI: 10.1088/1742-6596/2190/1/012010
Google Scholar
[16]
Ch.C. Dupont-Gillain, Y. Adriaensen, S. Derclaye, P.G. Rouxhet. Langmuir, 16, 8194.
DOI: 10.1021/la000326l
Google Scholar
[17]
Zhang, Q., Zhuang, J., von Woedtke, T., Kolb, J. F., Zhang, J., Fang, J., & Weltmann, K. D. (2014). Synergistic antibacterial effects of treatments with low temperature plasma jet and pulsed electric fields. Applied Physics Letters, 105(10), 104103.
DOI: 10.1063/1.4895731
Google Scholar
[18]
Robert, E., Darny, T., Dozias, S., Iseni, S., & Pouvesle, J. M. (2015). New insights on the propagation of pulsed atmospheric plasma streams: From single jet to multi jet arrays. Physics of Plasmas, 22(12), 122007.
DOI: 10.1063/1.4934655
Google Scholar
[19]
Obradović, B. M., Ivković, S. S., & Kuraica, M. M. (2008). Spectroscopic measurement of electric field in dielectric barrier discharge in helium. Applied Physics Letters, 92(19), 191501.
DOI: 10.1063/1.2927477
Google Scholar
[20]
Chung, T. H., Stancampiano, A., Sklias, K., Gazeli, K., André, F. M., Dozias, S., et al. (2020). Cell electropermeabilisation enhancement by non-thermal-plasma-treated PBS. Cancers, 12(1), 219.
DOI: 10.3390/cancers12010219
Google Scholar
[21]
Cheruthazhekatt, S., Cernak, M., Slavicek, P., & Havel, J. (2010). Gas Plasmas and Plasma Modified Materials in Medicine. Journal of Applied Biomedicine, 55-66.
DOI: 10.2478/v10136-009-0013-9
Google Scholar
[22]
Drelich, J., Miller, J. D., & Good, R. J. (1996). The Effect of Drop (Bubble) Size on Advancing and Receding Contact. Journal of Colloid and Interface Science, 37-50.
DOI: 10.1006/jcis.1996.0186
Google Scholar
[23]
Ryan, B. J., & Poduska, K. M. (2008). Roughness effects on contact angle measurements. American Journal of Physics, 76, 1074-1077.
DOI: 10.1119/1.2952446
Google Scholar
[24]
Pappas, D. (2011). Status and potential of atmospheric plasma processing of materials. Journal of Vacuum Science & Technology A, 29(2)
Google Scholar
[25]
Jeong, J. Y., Park, J., Henins, I., Babayan, S. E., Tu, V. J., Selwyn, G. S., & Hicks, R. F. (2000). Reaction chemistry in the afterglow of an oxygen−helium, atmospheric-pressure plasma. The Journal of Physical Chemistry A, 104(34), 8027-803.
DOI: 10.1021/jp0012449
Google Scholar
[26]
Babayan, S. E., "Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet," Plasma Sources Sci. Technol., 10, 573-578 (2001).
DOI: 10.1088/0963-0252/10/4/305
Google Scholar
[27]
N. Abramzon, J. C. Joaquin, J. Bray, and G. Brelles-Marino, "Biofilm Destruction by RF High-Pressure Cold Plasma Jet," IEEE Transactions on Plasma Science, vol. 34, no. 4, pp.1304-1309, Aug. 2006.
DOI: 10.1109/TPS.2006.877515
Google Scholar
[28]
Tseng, S., Abramzon, N., Jackson, J.O., et al. (2012). Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores. Applied Microbiology and Biotechnology, 93, 2563–2570.
DOI: 10.1007/s00253-011-3661-0
Google Scholar
[29]
Moravej, M., & Hicks, R. F. (2005). Atmospheric plasma deposition of coatings using a capacitive discharge source. Chemical vapor deposition, 11(11‐12), 469-476.
DOI: 10.1002/cvde.200400022
Google Scholar
[30]
Babayan, S. E., "Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet," Plasma Sources Sci. Technol., 10, 573-578 (2001).
DOI: 10.1088/0963-0252/10/4/305
Google Scholar
[31]
Cvelbar, U., Krstulović, N., Milošević, S., & Mozetič, M. (2007). Inductively coupled RF oxygen plasma characterization by optical emission spectroscopy. Vacuum, 82(2), 224-227.
DOI: 10.1016/j.vacuum.2007.07.016
Google Scholar
[32]
Bruggeman, P. J., Kushner, M. J., Locke, B. R., Gardeniers, J. G., Graham, W., Graves, D. B., ..& Zvereva, G. (2016). Plasma–liquid interactions: a review and roadmap. Plasma sources science and technology, 25(5)
Google Scholar
[33]
Tendero, C., Tixier, C., Tristant, P., Desmaison, J., & Leprince, P. (2006). Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B: Atomic Spectroscopy, 61(1), 2-30
DOI: 10.1016/j.sab.2005.10.003
Google Scholar
[34]
Herrmann, H. W., Henins, I., Park, J., & Selwyn, G. S. (1999). Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ). Physics of Plasmas, 6(5), 2284-2289
DOI: 10.1063/1.873480
Google Scholar
[35]
Darny, T., Pouvesle, J. M., Puech, V., Douat, C., Dozias, S., & Robert, E. (2017). Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements. Plasma Sources Science and Technology, 26(4), 045008.
DOI: 10.1088/1361-6595/aa5b15
Google Scholar
[36]
Urabe, K., Morita, T., Tachibana, K., & Ganguly, B. N. (2010). Investigation of discharge mechanisms in helium plasma jet at atmospheric pressure by laser spectroscopic measurements. Journal of Physics D: Applied Physics, 43(9), 095201
DOI: 10.1088/0022-3727/43/9/095201
Google Scholar
[37]
Omran, A. V., Busco, G., Ridou, L., Dozias, S., Grillon, C., Pouvesle, J. M., & Robert, E. (2020). Cold atmospheric single plasma jet for RONS delivery on large biological surfaces. Plasma Sources Science and Technology, 29(10), 105002
DOI: 10.1088/1361-6595/abaffd
Google Scholar
[38]
Hegemann, D., Hossain, M. M., Körner, E., & Balazs, D. J. (2007). Macroscopic description of plasma polymerization. Plasma Processes and Polymers, 4(3), 229-238.
DOI: 10.1002/ppap.200600169
Google Scholar
[39]
Kim, M.C., D.K. Song, H.S. Shin, S.-H. Baeg, G.S. Kim, J.-H. Boo, J.G. Han, and S.H. Yang. Surface Modification for Hydrophilic Property of Stainless Steel Treated by Atmospheric-Pressure Plasma Jet. Surface and Coatings Technology, 171.1-3 (2003): 312-16.
DOI: 10.1016/s0257-8972(03)00292-5
Google Scholar
[40]
Al-Hamarneh, Ibrahim, Pedrow, Patrick, Eskhan, Asma, Abu-Lail, Nehal. (2012). Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses. Applied Surface Science, 259, 424–432.
DOI: 10.1016/j.apsusc.2012.07.061
Google Scholar