Surface Modification of Stainless Steel Using Radio-Frequency Generated Cold Plasma

Article Preview

Abstract:

Atmospheric pressure plasma modifies the surface properties of materials while preserving their bulk characteristics. Here, we show how an oxygen helium atmospheric pressure plasma can increase surface energy of 330 series stainless steel, a material used in biomedical and industrial applications. Plasma treatment was done with a commercial atmospheric pressure plasma reactor. Optical Emission Spectroscopy was performed to assess relative concentrations of plasma species present. In addition to demonstrating the effectiveness of this surface treatment approach, our results show that the increase in hydrophilicity is proportional to the concentration of reactive oxygen species present in the plasma suggesting that these species are important to the treatment process. Keywords: Surface modification; cold plasma; Reactive Oxygen Species

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-35

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Martina Paldrychová, Eva Vaňková, Vladimír Scholtz, Jaroslav Julák, Eliška Sembolová, Olga Mat'átková, and Jan Masák (2019). Effect of non-thermal plasma on AHL-dependent QS systems and biofilm formation in Pseudomonas aeruginosa: Difference between non-hospital and clinical isolates. AIP Advances, 9, 055117

DOI: 10.1063/1.5090451

Google Scholar

[2] Rezaei, F., Abbasi-Firouzjah, M., & Shokri, B. (2014). Investigation of antibacterial and wettability behaviours of plasma-modified PMMA films for application in ophthalmology. Journal of Physics D: Applied Physics, 47(8), 085401.

DOI: 10.1088/0022-3727/47/8/085401

Google Scholar

[3] Sakudo, A., & Misawa, T. (2020). Antibiotic-resistant and non-resistant bacteria display similar susceptibility to dielectric barrier discharge plasma. International Journal of Molecular Sciences, 21(17), 6326.

DOI: 10.3390/ijms21176326

Google Scholar

[4] Maho, T., Binois, R., Brulé-Morabito, F., Demasure, M., Douat, C., Dozias, S., Escot Bocanegra, P., Goard, I., Hocqueloux, L., Le Helloco, C., and Orel, I. (2021). Anti-bacterial action of plasma multi-jets in the context of chronic wound healing. Applied Sciences, 11(20), 9598.

DOI: 10.3390/app11209598

Google Scholar

[5] Vijayarangan, Vinodini, Antony Delalande, Sébastien Dozias, J-M. Pouvesle, Eric Robert, and Chantal Pichon. (2020). New insights on molecular internalization and drug delivery following plasma jet exposures. International Journal of Pharmaceutics, 589, 119874.

DOI: 10.1016/j.ijpharm.2020.119874

Google Scholar

[6] Bekeschus, S., Favia, P., Robert, E., & von Woedtke, T. (2019). White paper on plasma for medicine and hygiene: Future in plasma health sciences. Plasma Processes and Polymers, 16(1), 1800033.

DOI: 10.1002/ppap.201800033

Google Scholar

[7] Ehlbeck, J., Schnabel, U., Polak, M., Winter, J., Von Woedtke, T., Brandenburg, R., et al. (2010). Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal of Physics D: Applied Physics, 44(1), 013002.

DOI: 10.1088/0022-3727/44/1/013002

Google Scholar

[8] Gilmore, B. F., Flynn, P. B., O'Brien, S., Hickok, N., Freeman, T., & Bourke, P. (2018). Cold plasmas for biofilm control: opportunities and challenges. Trends in biotechnology, 36(6), 627-638.

DOI: 10.1016/j.tibtech.2018.03.007

Google Scholar

[9] Fatma & Oflaz, Hakan & Ercan, Utku. (2016). Biofilm Inactivation and Prevention On Common Implant Material Surfaces by Non-Thermal DBD Plasma Treatment. Plasma Medicine, 6.

DOI: 10.1615/PlasmaMed.2016015846

Google Scholar

[10] Vleugels, M., Shama, G., Deng, X. T., Greenacre, E., Brocklehurst, T., & Kong, M. G. (2005). Atmospheric Plasma Inactivation of Biofilm-Forming. Loughborough University Institutional Repository, 824-828.

DOI: 10.1109/tps.2005.844524

Google Scholar

[11] M. Tatoulian, M. Bouloussa, F. Moriere, F. Arefi-Khonsari, J.Amouroux, F. Rondelez. Langmuir, 20, 10481.

DOI: 10.1021/la030378l

Google Scholar

[12] Steen, M. L., Flory, W. C., Capps, N. E., & Fisher, E. R. (2001). Plasma modification of porous structures for formation of composite materials. Chemistry of materials, 13(9), 2749-2752.

DOI: 10.1021/cm010452q

Google Scholar

[13] Giannakaris, Nikolaos, et al. "Surface cleaning with atmospheric pressure plasma jet investigated by in-situ optical emission spectroscopy and laser-induced breakdown spectroscopy." Applied Surface Science, 684 (2025): 161751.

DOI: 10.1016/j.apsusc.2024.161751

Google Scholar

[14] Shang, H., Ning, W., Shen, S., Wang, R., Dai, D., & Jia, S. (2024). Atmospheric pressure plasma jet for surface treatment: a review. Reviews of Modern Plasma Physics, 9(1), 3.

DOI: 10.1007/s41614-024-00177-0

Google Scholar

[15] Setiawan, U. H., I. F. Nurcahyo, and T. E. Saraswati. "Atmospheric pressure plasma jet for surface material modification: a mini-review." Journal of Physics: Conference Series, 2190.1 (2022)

DOI: 10.1088/1742-6596/2190/1/012010

Google Scholar

[16] Ch.C. Dupont-Gillain, Y. Adriaensen, S. Derclaye, P.G. Rouxhet. Langmuir, 16, 8194.

DOI: 10.1021/la000326l

Google Scholar

[17] Zhang, Q., Zhuang, J., von Woedtke, T., Kolb, J. F., Zhang, J., Fang, J., & Weltmann, K. D. (2014). Synergistic antibacterial effects of treatments with low temperature plasma jet and pulsed electric fields. Applied Physics Letters, 105(10), 104103.

DOI: 10.1063/1.4895731

Google Scholar

[18] Robert, E., Darny, T., Dozias, S., Iseni, S., & Pouvesle, J. M. (2015). New insights on the propagation of pulsed atmospheric plasma streams: From single jet to multi jet arrays. Physics of Plasmas, 22(12), 122007.

DOI: 10.1063/1.4934655

Google Scholar

[19] Obradović, B. M., Ivković, S. S., & Kuraica, M. M. (2008). Spectroscopic measurement of electric field in dielectric barrier discharge in helium. Applied Physics Letters, 92(19), 191501.

DOI: 10.1063/1.2927477

Google Scholar

[20] Chung, T. H., Stancampiano, A., Sklias, K., Gazeli, K., André, F. M., Dozias, S., et al. (2020). Cell electropermeabilisation enhancement by non-thermal-plasma-treated PBS. Cancers, 12(1), 219.

DOI: 10.3390/cancers12010219

Google Scholar

[21] Cheruthazhekatt, S., Cernak, M., Slavicek, P., & Havel, J. (2010). Gas Plasmas and Plasma Modified Materials in Medicine. Journal of Applied Biomedicine, 55-66.

DOI: 10.2478/v10136-009-0013-9

Google Scholar

[22] Drelich, J., Miller, J. D., & Good, R. J. (1996). The Effect of Drop (Bubble) Size on Advancing and Receding Contact. Journal of Colloid and Interface Science, 37-50.

DOI: 10.1006/jcis.1996.0186

Google Scholar

[23] Ryan, B. J., & Poduska, K. M. (2008). Roughness effects on contact angle measurements. American Journal of Physics, 76, 1074-1077.

DOI: 10.1119/1.2952446

Google Scholar

[24] Pappas, D. (2011). Status and potential of atmospheric plasma processing of materials. Journal of Vacuum Science & Technology A, 29(2)

Google Scholar

[25] Jeong, J. Y., Park, J., Henins, I., Babayan, S. E., Tu, V. J., Selwyn, G. S., & Hicks, R. F. (2000). Reaction chemistry in the afterglow of an oxygen−helium, atmospheric-pressure plasma. The Journal of Physical Chemistry A, 104(34), 8027-803.

DOI: 10.1021/jp0012449

Google Scholar

[26] Babayan, S. E., "Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet," Plasma Sources Sci. Technol., 10, 573-578 (2001).

DOI: 10.1088/0963-0252/10/4/305

Google Scholar

[27] N. Abramzon, J. C. Joaquin, J. Bray, and G. Brelles-Marino, "Biofilm Destruction by RF High-Pressure Cold Plasma Jet," IEEE Transactions on Plasma Science, vol. 34, no. 4, pp.1304-1309, Aug. 2006.

DOI: 10.1109/TPS.2006.877515

Google Scholar

[28] Tseng, S., Abramzon, N., Jackson, J.O., et al. (2012). Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores. Applied Microbiology and Biotechnology, 93, 2563–2570.

DOI: 10.1007/s00253-011-3661-0

Google Scholar

[29] Moravej, M., & Hicks, R. F. (2005). Atmospheric plasma deposition of coatings using a capacitive discharge source. Chemical vapor deposition, 11(11‐12), 469-476.

DOI: 10.1002/cvde.200400022

Google Scholar

[30] Babayan, S. E., "Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet," Plasma Sources Sci. Technol., 10, 573-578 (2001).

DOI: 10.1088/0963-0252/10/4/305

Google Scholar

[31] Cvelbar, U., Krstulović, N., Milošević, S., & Mozetič, M. (2007). Inductively coupled RF oxygen plasma characterization by optical emission spectroscopy. Vacuum, 82(2), 224-227.

DOI: 10.1016/j.vacuum.2007.07.016

Google Scholar

[32] Bruggeman, P. J., Kushner, M. J., Locke, B. R., Gardeniers, J. G., Graham, W., Graves, D. B., ..& Zvereva, G. (2016). Plasma–liquid interactions: a review and roadmap. Plasma sources science and technology, 25(5)

Google Scholar

[33] Tendero, C., Tixier, C., Tristant, P., Desmaison, J., & Leprince, P. (2006). Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B: Atomic Spectroscopy, 61(1), 2-30

DOI: 10.1016/j.sab.2005.10.003

Google Scholar

[34] Herrmann, H. W., Henins, I., Park, J., & Selwyn, G. S. (1999). Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ). Physics of Plasmas, 6(5), 2284-2289

DOI: 10.1063/1.873480

Google Scholar

[35] Darny, T., Pouvesle, J. M., Puech, V., Douat, C., Dozias, S., & Robert, E. (2017). Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements. Plasma Sources Science and Technology, 26(4), 045008.

DOI: 10.1088/1361-6595/aa5b15

Google Scholar

[36] Urabe, K., Morita, T., Tachibana, K., & Ganguly, B. N. (2010). Investigation of discharge mechanisms in helium plasma jet at atmospheric pressure by laser spectroscopic measurements. Journal of Physics D: Applied Physics, 43(9), 095201

DOI: 10.1088/0022-3727/43/9/095201

Google Scholar

[37] Omran, A. V., Busco, G., Ridou, L., Dozias, S., Grillon, C., Pouvesle, J. M., & Robert, E. (2020). Cold atmospheric single plasma jet for RONS delivery on large biological surfaces. Plasma Sources Science and Technology, 29(10), 105002

DOI: 10.1088/1361-6595/abaffd

Google Scholar

[38] Hegemann, D., Hossain, M. M., Körner, E., & Balazs, D. J. (2007). Macroscopic description of plasma polymerization. Plasma Processes and Polymers, 4(3), 229-238.

DOI: 10.1002/ppap.200600169

Google Scholar

[39] Kim, M.C., D.K. Song, H.S. Shin, S.-H. Baeg, G.S. Kim, J.-H. Boo, J.G. Han, and S.H. Yang. Surface Modification for Hydrophilic Property of Stainless Steel Treated by Atmospheric-Pressure Plasma Jet. Surface and Coatings Technology, 171.1-3 (2003): 312-16.

DOI: 10.1016/s0257-8972(03)00292-5

Google Scholar

[40] Al-Hamarneh, Ibrahim, Pedrow, Patrick, Eskhan, Asma, Abu-Lail, Nehal. (2012). Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses. Applied Surface Science, 259, 424–432.

DOI: 10.1016/j.apsusc.2012.07.061

Google Scholar