Parametric Effect and Optimization of Milling Operation of Mild Steel

Article Preview

Abstract:

This study investigates the influence of milling parameters on the material removal rate (MRR) of thick mild steel. The study employs a designed experiment to evaluate the influence of cutting speed, feed rate, and depth of cut on MRR. A total of nine milling experiments are conducted on mild steel using orthogonal array method. The study aims to identify the optimal process parameters for achieving a maximum MRR on mild steel workpieces. The value of signal to noise ratio (SNR) is used to evaluate the optimal values of milling parameters for thick mild steel. Higher-the-better type quality characteristic is used to evaluate the SNR of MRR. Further, MRR is analyzed using ANOVA method to elect the significant milling process parameters based on P-values and fisher coefficient. Depth of cut found the significant followed by feed rate and speed. The contribution of each milling process parameter is also evaluated. Depth of cut contribution is found 66% on MRR of thick mild steel

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-24

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. A. Selaimia, M. A. Yallese, H. Bensouilah, I. Meddour, R. Khattabi, T. Mabrouki, Modeling and optimization in dry face milling of X2CrNi18-9 austenitic stainless steel using RMS and desirability approach. Measurement, 107 (2017) 53-67.

DOI: 10.1016/j.measurement.2017.05.012

Google Scholar

[2] J. M. Vieira, A. R. Machado, E. O. Ezugwu, Performance of cutting fluids during face milling of steels. Journal of Materials Processing Technology 116 (2001) 244-251.

DOI: 10.1016/s0924-0136(01)01010-x

Google Scholar

[3] K. Simunovic, G. Simunovic, T. Saric, Single and multiple goal optimization of structural steel face milling process considering different methods of cooling/lubricating. Journal of cleaner production 94 (2015) 321-329.

DOI: 10.1016/j.jclepro.2015.02.015

Google Scholar

[4] D. Y. Pimenov, A. T. Abbas, M. K. Gupta, I. N. Erdakov, M. S. Soliman, M. M. El Rayes, Investigations of surface quality and energy consumption associated with costs and material removal rate during face milling of AISI 1045 steel. The International Journal of Advanced Manufacturing Technology 107 (2020) 3511-3525.

DOI: 10.1007/s00170-020-05236-7

Google Scholar

[5] A. T. Abbas, A. E. Ragab, E. A. Al Bahkali, E. A. El Danaf, Optimizing cutting conditions for minimum surface roughness in face milling of high strength steel using carbide inserts. Advances in Materials Science and Engineering 2016 (2016) 7372132.

DOI: 10.1155/2016/7372132

Google Scholar

[6] V. K. Sharma, T. Singh, M. Rana, A. K. Singh, K. Chattopadhyay, Experimental investigation of tool wear in face milling of EN-31 steel under different machining environments. Materials Today: Proceedings 50 (2022) 2135-2142.

DOI: 10.1016/j.matpr.2021.09.438

Google Scholar

[7] R. Binali, H. Demirpolat, M. Kuntoğlu, H. Sağlam, Machinability investigations based on tool wear, surface roughness, cutting temperature, chip morphology and material removal rate during dry and MQL-assisted milling of Nimax mold steel. Lubricants 11 (2023) 101.

DOI: 10.3390/lubricants11030101

Google Scholar

[8] F. M. Mohamed, F.B. Brahim, B. T. Toufik, Y. Mohamed Athmane, Optimization and mathematical modelling of surface roughness criteria and material removal rate when milling C45 steel using RSM and desirability approach. Journal of Mechanical Engineering (JMechE), 20 (2023) 173-197.

DOI: 10.24191/jmeche.v20i3.23907

Google Scholar

[9] S. B. Kedare, D. R. Borse, P. T. Shahane, Effect of minimum quantity lubrication (MQL) on surface roughness of mild steel of 15HRC on universal milling machine. Procedia Materials Science 6 (2014) 150-153.

DOI: 10.1016/j.mspro.2014.07.018

Google Scholar