[1]
A. Lagashetty, A.Venkataraman, Polymer Nanocomposites Resonance, Journal of Science Education 10 (5) (2005) 49-60.
Google Scholar
[2]
D. Feldman, Polymer Nanocomposites in Building Construction, Journal of Macromolecular Science, Part A, 51(3) (2014) 203-209.
Google Scholar
[3]
A. Verma, PK. Khare, RK. Srivastava, Electrode effect on electrical conduction in thin film of polyvinyl pyrrolidone. Ind J. Prure Appl. Phys. 42 (2009) 693–696.
Google Scholar
[4]
A. Boudjemaa, I. Laurent, Y. Candau, M. Jean-Charles, A comparative analysis of dielectric, rheological and thermophysical behaviour of ethylene vinyl acetate/BaTiO3 composites, J Phys. D Appl. Phys, 41(5) (2008) 055407.
DOI: 10.1088/0022-3727/41/5/055407
Google Scholar
[5]
M. Šupová, GS. Martynková, and K. Barabaszová, Effect of nanofillers dispersion in polymer matrices: A review. Science of Advanced Materials 3 (2011) 1-25.
DOI: 10.1166/sam.2011.1136
Google Scholar
[6]
Y. Chen, H. Yang, Sh. Zhou and Wu. Limin, Structure and properties of polyurethane / nanosilica composites, Journal of Applied Polymer Science. 95(5) (2005) 1032 - 1039.
DOI: 10.1002/app.21180
Google Scholar
[7]
D. Matykiewicz, M. Barczewski, S. Michałowski, Basalt powder as eco-friendly filler for epoxy composites: Thermal and thermo-mechanical properties assessment, Composites Part B: Engineering, 164 (2019) 272-279.
DOI: 10.1016/j.compositesb.2018.11.073
Google Scholar
[8]
M. Zhang, X. Zhao, H. Jia, H. Xing, H. Zhang, X. Wang, and Ch. Liu, Anticorrosion properties of modified basalt powder/epoxy resin coating, Journal of Coatings Technology and Research 19 (2022)1409–1420.
DOI: 10.1007/s11998-022-00615-z
Google Scholar
[9]
D. Matykiewicz, M. Barczewski, M. S. Mousa, M R Sanjay , Impact Strength of Hybrid Epoxy–Basalt Composites Modified with Mineral and Natural Fillers, Chem Engineering 5(3) 56.
DOI: 10.3390/chemengineering5030056
Google Scholar
[10]
P. Russo, G. Simeoli, F. Cimino, I. Papa, M.R. Ricciardi, and V. Lopresto, Impact Damage Behavior of Vinyl Ester-, Epoxy-, and Nylon 6-Based Basalt Fiber Composites. J. Mater. Eng. Perform. 28 (2019) 3256–3266.
DOI: 10.1007/s11665-019-04037-8
Google Scholar
[11]
S. Mahesh Babu, M. Venkateswara Rao, Effect of basalt powder on mechanical properties and dynamic mechanical thermal analysis of hybrid epoxy composites reinforced with glass fiber, Journal of the Chinese Advanced Materials Society 6(3) (2018):1-18.
DOI: 10.1080/22243682.2018.1470030
Google Scholar
[12]
L. Yun, J. Ma, Tai-Yi Liu, and Wang, A Novel Basalt Flake Epoxy Resin Coating Modified by Carbon Nanotubes, Coatings 9 (11) (2019) 714.
DOI: 10.3390/coatings9110714
Google Scholar
[13]
K. Sałasinska, M. Kirpļuks, P. Cābulis, A. Kovaļovs, E. Skuķis, P. Kozikowski, M. Celinski, K. Mizera, M. Galecka, K. Kalniņš, and U. Cabulis, Experimental Investigation of the Mechanical Properties and Fire Behavior of Epoxy Composites Reinforced by Fabrics and Powder Fillers, Processes 9(5) (2021) 738.
DOI: 10.3390/pr9050738
Google Scholar
[14]
M. Srinivas, I. Srikanth, G. RamaRao, G. Swami and Naidu, Effect of Volume Fraction of Reinforcement Layers on the Mechanical Properties of S-glass-Carbon-Epoxy Hybrid Composites, Materialstodays: Proceedings, 18 (2019) Part 7, 4580-4588.
DOI: 10.1016/j.matpr.2019.07.432
Google Scholar
[15]
D. Matykiewicz, M. Barczewski, D. Knapski, K. Skórczewska, Hybrid effects of basalt fibers and basalt powder on thermomechanical properties of epoxy composites, Composites Part B: Engineering, 125 (2017) 157-164.
DOI: 10.1016/j.compositesb.2017.05.060
Google Scholar
[16]
D. Rassokhin, D. Starokadomsky, A. Ishchenko, O. Tkachenko, M. Reshetnyk, L. Kokhtych, Determining the strength and thermal-, chemical resistance of the epoxy polymer composite filled with basalt micronano fiber in the amount of 15–80% by weight. East.-Eur. J. Enterp. Technol. 2 (2020) 48–55.
DOI: 10.15587/1729-4061.2020.200491
Google Scholar
[17]
D. Toorchi, E. Tohidlou, and H. Khosravi, Enhanced flexural and tribological properties of basalt fiber-epoxy composite using nano-zirconia/graphene oxide hybrid system, journal of industrial textile 5(2) (2019) 3238S-3252S.
DOI: 10.1177/1528083720920573
Google Scholar
[18]
D. Matykiewicz, and M. Barczewski, On the impact of flax fibers as an internal layer on the properties of basalt-epoxy composites modified with silanized basalt powder. Compos. Commun. 2020(20) 100360.
DOI: 10.1016/j.coco.2020.100360
Google Scholar
[19]
P.M. Stefani, V. Cyras, A. Tejeira Barchi, A. Vazquez, Mechanical properties and thermal stability of rice husk ash filled epoxy foams. J. Appl. Polym. Sci. 99 (2006) 2957–2965.
DOI: 10.1002/app.23001
Google Scholar
[20]
K.A. Prasath, P. Amuthakkannan, V. Arumugaprabu, V. Manikandan, Low velocity impact and compression after impact damage responses on flax/basalt fiber hybrid composites. Mater. Res. Express 6 (2019) 115308.
DOI: 10.1088/2053-1591/ab43f4
Google Scholar
[21]
V. Fiore, T. Scalici, F. Sarasini, J. Tirilló, and Calabrese L., Salt-fog spray aging of jute-basalt reinforced hybrid structures: Flexural and low velocity impact response. Compos. Part B Eng. 116 (2017) 99-112.
DOI: 10.1016/j.compositesb.2017.01.031
Google Scholar
[22]
P. Russo, G. Simeoli, F. Cimino, I. Papa, M.R. Ricciardi, V. Lopresto, Impact Damage Behavior of Vinyl Ester-, Epoxy-, and Nylon 6-Based Basalt Fiber Composites. J. Mater. Eng. Perform 28 (2019) 3256–3266.
DOI: 10.1007/s11665-019-04037-8
Google Scholar
[23]
M. A. Shohide, and M. A. Ahmed, Influence of Silica Nanoparticles on the Properti of Nanocomposite Based on Epoxy as Concrete Protective Coating, Materials Science Forum 1089 (2023)153-163.
DOI: 10.4028/p-p961bu
Google Scholar
[24]
Y. Huang, M. Cai, H. Can, Si. Chengyi , L. Li, X. Fan, M. Zhu, Basalt fiber as a skeleton to enhance the multi-conditional tribological properties of epoxy coating, Tribology International 183 (2023) 108390.
DOI: 10.1016/j.triboint.2023.108390
Google Scholar
[25]
M. A. Shohide, Fabrication and application of an innovative low cost-efficient polymer nano-composite as concrete protective coating, International Journal of Adhesion and Adhesives, 128 (2024) 103542.
DOI: 10.1016/j.ijadhadh.2023.103542
Google Scholar
[26]
M. A. Shohide, Novel polymer – Carbon nanotube composite coating for steel protection, International Journal of Adhesion and Adhesives, 138 (2025) 103930
DOI: 10.1016/j.ijadhadh.2024.103930
Google Scholar
[27]
Li Ch., H. wang, X. Zhao, Y. Fu, X. He, and Yigou, Investigation of Mechanical Properties for Basalt Fiber/Epoxy Resin Composites Modified with La, Coatings 11(2021):666.
DOI: 10.3390/coatings11060666
Google Scholar
[28]
E. M. Elnaggar, T. M. Elsokkary, M. A. Shohide, B A. El-Sabbagh, and H. A. Abdel-Gawwad, Surface protection of concrete by new protective coating, Construction and Building materials 20 (2019) 245-252.
DOI: 10.1016/j.conbuildmat.2019.06.026
Google Scholar
[29]
B. Wei, S. Song, and H. Cao, Strengthening of basalt fibers with nano-SiO2-epoxy composite coating, Materials & Design 32(8) (2011) 4180-4186.
DOI: 10.1016/j.matdes.2011.04.041
Google Scholar
[30]
T. Ota, Effect of Silane Coupling Agent Concentration on Interfacial Properties of Basalt Fiber Reinforced Composites, Journal of Materials Science and Engineering A 13(2).
DOI: 10.17265/2161-6213/2023.4-6.002
Google Scholar
[31]
Y. Xiang, G. Long, and Y. Xie, Effect of basalt fiber surface silane coupling agent coating on fiber-reinforced asphalt: From macro-mechanical performance to micro-interfacial mechanism, Construction and Building Materials 179 (2018)107-116.
DOI: 10.1016/j.conbuildmat.2018.05.192
Google Scholar
[32]
J. Zhou, C. Chen , S. Zhang, T. Zhong , Q. Xu , Z. Su , M. Jiang and P. Liu, Enhancing the interfacial adhesion between continuous basalt fibers and epoxy resin by depositing silicon dioxide nanonparticles, Journal of Industrial Textiles 51(2).
DOI: 10.1177/15280837221099661
Google Scholar
[33]
M. Lebedev, O. Startsev, A. Kychkin, The effects of aggressive environments on the mechanical properties of basalt plastics, Heliyn 6 (3) e03481.
DOI: 10.1016/j.heliyon.2020.e03481
Google Scholar
[34]
C.R. Raajeshkrishna, P. Chandramohan, O. Babatunde, A. Friction and thermo mechanical characterization of nano basalt reinforced epoxy composites. Int. J. Polym. Anal. Charact. 26(2021)425–439.
DOI: 10.1080/1023666x.2021.1899692
Google Scholar
[35]
A. Posmyk, and J. Myalski, influence of basalt particles on tribological properties of polymeric composites intended for friction contacts in means of transport, Composites Theory and Practice, 20 (1) (2020) 3-6.
Google Scholar
[36]
S.M. Babu, and M.V. Rao, Experimental studies on the effect of basalt powder inclusion on mechanical properties of hybrid epoxy and polyester reinforced with glass fiber, Lecture Notes in Mechanical Engineering, (2019) 25-31.
DOI: 10.1007/978-981-13-6374-0_4
Google Scholar
[37]
M. Zhou, G. Yin, and E. Naderikalali, Basalt Fiber-Based Flame Retardant Epoxy Composites: Preparation, Thermal Properties, and Flame Retardancy, Materials 14(4) (2021) 902.
DOI: 10.3390/ma14040902
Google Scholar
[38]
C. A. Chairman, D. Pritima, V. Dhinakaran, B. Stalin, M. Ravichandran, and M. Balasubramanian, investigations on mechanical properties of basalt powder filled vinyl ester composites, IOP Conference Series Materials Science and Engineering (2020) 012094, IOP Publishing.
DOI: 10.1088/1757-899x/988/1/012094
Google Scholar
[39]
C. Ding, K. Xue, and G. Yi, Research on fire resistance and economy of basalt fiber insulation mortar, Scientific Reports 13(1) 17288 (2023).
DOI: 10.1038/s41598-023-44591-9
Google Scholar
[40]
P. Tamás-Bényei, and P. Sántha, Potential applications of basalt fibre composites in thermal shielding, Journal of Thermal Analysis and Calorimetry, 148 (2023) 271–279.
DOI: 10.1007/s10973-022-11799-2
Google Scholar