[1]
V. Sharma, J. Saha, S. Patnaik, B.K. Kuanr, Synthesis and characterization of yttrium iron garnet (YIG) nanoparticles – microwave material, AIP Adv. 7 (2017) 056405.
DOI: 10.1063/1.4973199
Google Scholar
[2]
M. Derakhshani, E. Taheri-Nassaj, M. Jazirehpour, S.M. Masoudpanah, Structural, magnetic, and gigahertz-range electromagnetic wave absorption properties of bulk Ni-Zn ferrite, Sci. Rep. 11 (2021) 9468-9481.
DOI: 10.1038/s41598-021-88930-0
Google Scholar
[3]
S. Soreto Teixeira, F. Amaral, M.P.F. Graca, L.C. Costa, Comparison of lithium ferrite powders prepared by sol-gel and solid state reaction methods, Mater. Sci. Eng. B. 255 (2020) 114529.
DOI: 10.1016/j.mseb.2020.114529
Google Scholar
[4]
A. Younes, N. Kherrouba, A. Bouamer, Magnetic, optical, structural and thermal properties of copper ferrite nanostructured synthesized by mechanical alloying, Micro Nano Lett. 16 (2021) 251-256.
DOI: 10.1049/mna2.12040
Google Scholar
[5]
S.K.M. Yassin, Superparamagnetic Ni0.5Zn0.5Fe2O4 nanoparticles prepared by ball milling, Appl. Phys. A: Mater. Sci. Process. 129 (2023) 672.
Google Scholar
[6]
S. Hasan & B. Azhdar, Synthesis of nickel-zinc ferrite nanoparticles by the sol-gel auto-combustion method: Study of crystal structural, cation distribution, and magnetic properties, Adv. Cond. Matter Phys. 2022 (2022) 4603855.
DOI: 10.1155/2022/4603855
Google Scholar
[7]
R. Nazlan, I. Ismail, R.S. Azis, Z. Abbas, I.R. Ibrahim, F.M. Idris, F.N. Shafiee, Dependence of magnetic and microwave loss on evolving microstructure in yttrium iron garnet, J. Mater. Sci.: Mater. Electrons. 29 (2018) 8688-8700.
DOI: 10.1007/s10854-018-8884-8
Google Scholar
[8]
Y. Yang, A. Walton, R. Sheridan, K. Guth, O. Gutfleisch, M. Buchert, B. Steenari, T.V. Gerven, P.T. Jones, K. Binnemans, REE recovery from end-of-life NdFeB permanent magnet scrap: A critical review, J. Sust. Metal. 3 (2017) 122-149.
DOI: 10.1007/s40831-016-0090-4
Google Scholar
[9]
J. Li, X. Huang, L. Zeng, B. Ouyang, X. Yu, M. Yang, B. Yang, R.S. Rawat, Z. Zhong, Tuning magnetic properties, thermal stability and microstructure of NdFeB magnets with diffusing Pr-Zn films, J. Mater. Sci. Technol. 41 (2020) 81-87.
DOI: 10.1016/j.jmst.2019.09.024
Google Scholar
[10]
B. Xie, M. Sun, B. Xu, C. Wang, H. Jiang, D. Li, Y. Li, Oxidation of stainless steel in vacuum and evolution of surface oxide scales during hot-compression bonding, Corros. Sci. 147 (2019) 41-52.
DOI: 10.1016/j.corsci.2018.11.001
Google Scholar
[11]
E. Firzer, W. Frohs, M. Heine, Optimization of stabilization and carbonization treatment of pan fibres and structural characterization of the resulting carbon fibres, Carbon, 24 (1986) 387-295.
DOI: 10.1016/0008-6223(86)90257-5
Google Scholar
[12]
F.N. Shafiee, R.S. Azis, N.H. Abdullah, M.S. Mustaffa, R. Nazlan, I. Ismail, M.N. Hamidon, I.H. Hasan, Potential patch antenna application with particle size variation in polycrystalline gadolinium iron garnet (GdIG), J. Aust. Ceram. Soc. 56 (2020) 1097-1105.
DOI: 10.1007/s41779-020-00448-2
Google Scholar
[13]
I. Ismail, M. Hashim, K.A. Matori, R. Alias, J. Hassan, Milling time and BPR dependence on permeability and losses of Ni0.5Zn0.5Fe2O4 synthesized via mechanical alloying process, J. Magn. Magn. Mater. 323 (2011) 1470-1476.
DOI: 10.1016/j.jmmm.2011.01.002
Google Scholar
[14]
Y. Wang, HA. Moghaddam, J.P. Moreno, P. Mertiny, Magnetic Filler Polymer Composites —Morphology Characterization and Experimental and Stochastic Finite Element Analyses of Mechanical Properties, Polymer (Basel) 15 (2023) 2897.
DOI: 10.3390/polym15132897
Google Scholar
[15]
U. Ulusoy, S. Cayirly, G. Bayar, H.S. Gokcen, Comparison of particle shape, surface area, and color properties of calcite particles ground by stirred and ball mill, Minerals 13 (2023) 99.
DOI: 10.3390/min13010099
Google Scholar
[16]
B. Nagarajam, Y. Wang, M. Taheri, S. Trudel, S. Bryant, A.J. Qureshi, P. Mertiny, Development and Characterization of Field Structured Magnetic Composites, Polymers 13 (2021) 2843.
DOI: 10.3390/polym13172843
Google Scholar
[17]
P. Maltoni, G. Barucca, B. Rutkowski, M.C. Spadaro, P.E. Jonsson, G. Varvaro, N. Yaacoub, J.A. De Toro, D. Peddis, R. Mathieu, Unravelling exchange coupling in ferrites nano-heterostructures, Small 20 (2024) 2304152.
DOI: 10.1002/smll.202304152
Google Scholar
[18]
F. Wang, G. Hu, P. Zhang, T. Feng, Y. Wang, R. Sun, J. Zhang, Dependence of nucleation field on the size of soft phase in magnetic hard-soft exchange coupling nanocomposites, Coatings 14 (2024) 219.
DOI: 10.3390/coatings14020219
Google Scholar
[19]
S.M. Hoque, C. Srivastava, V. Kumar, N. Venkatesh, H.N. Das, Exchange-spring mechanism of sift and hard ferrite nanocomposites, Mater. Res. Bull. 48 (2013) 2871-2877.
DOI: 10.1016/j.materresbull.2013.04.009
Google Scholar
[20]
J. Yoo & Y. Kang, Electromagnetic wave absorbing properties of Ni-Zn ferrite powder-epoxy composites in GHz range, J. Magn. Magn. Mater. 513 (2020) 167075.
DOI: 10.1016/j.jmmm.2020.167075
Google Scholar
[21]
J. Kang, C. Sun, J. Kim, J. You, M. Jang, J.W. Jeong, Y. Heo, Y. Kim, Local probing of eddy current correlated with magnetic properties, Appl. Phys. Lett. 123 (2023) 242401.
DOI: 10.1063/5.0173887
Google Scholar
[22]
N. Jahan, M.N.I. Khan, M.R. Hasan, M.S. Bashar, A. Islam, M.K. Alam, M.A. Hakim, J.I. Khandaker, Correlation among the structural, electric and magnetic properties of Al3+ substituted Ni-Zn-Co ferrites, RSC Adv. 12 (2022) 15167-15179.
DOI: 10.1039/d1ra09354a
Google Scholar