Structural, Microstructural and Magnetic Performance of NdFeB/Ni-Zn Ferrites Hybrid Magnetic Composites

Article Preview

Abstract:

Hybrid magnets integrate permanent and soft magnetic materials, resulting in enhanced magnetic performance suitable for a variety of applications. Neodymium-iron-boron (NdFeB) magnets, known for their high energy output, exhibit limitations at elevated frequencies due to eddy current effects. To address this problem, it is beneficial to combine NdFeB with high-resistivity nickel zinc ferrites (NZF) to optimize their magnetic properties. This study focuses on the synthesis of NZF and the fabrication of NdFeB/NZF hybrid composites with varying ratios of NdFeB-to-NZF (40:60, 50:50, and 60:40) and different configurations. Their structural, microstructural, and magnetic characteristics were analyzed to identify the optimum fraction for the hybrid composite formulations. In this work, a commercially available NdFeB and NZF were synthesized via high-energy ball milling while NdFeB was used for the composite’s fabrication. Among the synthesized samples, the mixture-composites of a 60:40 ratio exhibited the highest saturation magnetization of 43.01 emu/g with a notable Curie temperature of 390 °C. The results indicate that increasing the hard phase of NdFeB enhances both saturation magnetization and Curie temperature in all composite samples. Conversely, the stacked-composites with a 40:60 ratio displayed the highest resistivity at 7.96x106 Ωm, suggesting that a higher proportion of NZF significantly contributes to increased resistivity. The observed enhancements in magnetic properties can be attributed to the exchange spring mechanism between the soft and hard magnetic phases, as well as the larger grain size in the samples, which promotes a greater number of magnetic domains and reduction of the grain boundaries. Thus, it facilitates more efficient domain wall movement in response to the external magnetic field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-100

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Sharma, J. Saha, S. Patnaik, B.K. Kuanr, Synthesis and characterization of yttrium iron garnet (YIG) nanoparticles – microwave material, AIP Adv. 7 (2017) 056405.

DOI: 10.1063/1.4973199

Google Scholar

[2] M. Derakhshani, E. Taheri-Nassaj, M. Jazirehpour, S.M. Masoudpanah, Structural, magnetic, and gigahertz-range electromagnetic wave absorption properties of bulk Ni-Zn ferrite, Sci. Rep. 11 (2021) 9468-9481.

DOI: 10.1038/s41598-021-88930-0

Google Scholar

[3] S. Soreto Teixeira, F. Amaral, M.P.F. Graca, L.C. Costa, Comparison of lithium ferrite powders prepared by sol-gel and solid state reaction methods, Mater. Sci. Eng. B. 255 (2020) 114529.

DOI: 10.1016/j.mseb.2020.114529

Google Scholar

[4] A. Younes, N. Kherrouba, A. Bouamer, Magnetic, optical, structural and thermal properties of copper ferrite nanostructured synthesized by mechanical alloying, Micro Nano Lett. 16 (2021) 251-256.

DOI: 10.1049/mna2.12040

Google Scholar

[5] S.K.M. Yassin, Superparamagnetic Ni0.5Zn0.5Fe2O4 nanoparticles prepared by ball milling, Appl. Phys. A: Mater. Sci. Process. 129 (2023) 672.

Google Scholar

[6] S. Hasan & B. Azhdar, Synthesis of nickel-zinc ferrite nanoparticles by the sol-gel auto-combustion method: Study of crystal structural, cation distribution, and magnetic properties, Adv. Cond. Matter Phys. 2022 (2022) 4603855.

DOI: 10.1155/2022/4603855

Google Scholar

[7] R. Nazlan, I. Ismail, R.S. Azis, Z. Abbas, I.R. Ibrahim, F.M. Idris, F.N. Shafiee, Dependence of magnetic and microwave loss on evolving microstructure in yttrium iron garnet, J. Mater. Sci.: Mater. Electrons. 29 (2018) 8688-8700.

DOI: 10.1007/s10854-018-8884-8

Google Scholar

[8] Y. Yang, A. Walton, R. Sheridan, K. Guth, O. Gutfleisch, M. Buchert, B. Steenari, T.V. Gerven, P.T. Jones, K. Binnemans, REE recovery from end-of-life NdFeB permanent magnet scrap: A critical review, J. Sust. Metal. 3 (2017) 122-149.

DOI: 10.1007/s40831-016-0090-4

Google Scholar

[9] J. Li, X. Huang, L. Zeng, B. Ouyang, X. Yu, M. Yang, B. Yang, R.S. Rawat, Z. Zhong, Tuning magnetic properties, thermal stability and microstructure of NdFeB magnets with diffusing Pr-Zn films, J. Mater. Sci. Technol. 41 (2020) 81-87.

DOI: 10.1016/j.jmst.2019.09.024

Google Scholar

[10] B. Xie, M. Sun, B. Xu, C. Wang, H. Jiang, D. Li, Y. Li, Oxidation of stainless steel in vacuum and evolution of surface oxide scales during hot-compression bonding, Corros. Sci. 147 (2019) 41-52.

DOI: 10.1016/j.corsci.2018.11.001

Google Scholar

[11] E. Firzer, W. Frohs, M. Heine, Optimization of stabilization and carbonization treatment of pan fibres and structural characterization of the resulting carbon fibres, Carbon, 24 (1986) 387-295.

DOI: 10.1016/0008-6223(86)90257-5

Google Scholar

[12] F.N. Shafiee, R.S. Azis, N.H. Abdullah, M.S. Mustaffa, R. Nazlan, I. Ismail, M.N. Hamidon, I.H. Hasan, Potential patch antenna application with particle size variation in polycrystalline gadolinium iron garnet (GdIG), J. Aust. Ceram. Soc. 56 (2020) 1097-1105.

DOI: 10.1007/s41779-020-00448-2

Google Scholar

[13] I. Ismail, M. Hashim, K.A. Matori, R. Alias, J. Hassan, Milling time and BPR dependence on permeability and losses of Ni0.5Zn0.5Fe2O4 synthesized via mechanical alloying process, J. Magn. Magn. Mater. 323 (2011) 1470-1476.

DOI: 10.1016/j.jmmm.2011.01.002

Google Scholar

[14] Y. Wang, HA. Moghaddam, J.P. Moreno, P. Mertiny, Magnetic Filler Polymer Composites —Morphology Characterization and Experimental and Stochastic Finite Element Analyses of Mechanical Properties, Polymer (Basel) 15 (2023) 2897.

DOI: 10.3390/polym15132897

Google Scholar

[15] U. Ulusoy, S. Cayirly, G. Bayar, H.S. Gokcen, Comparison of particle shape, surface area, and color properties of calcite particles ground by stirred and ball mill, Minerals 13 (2023) 99.

DOI: 10.3390/min13010099

Google Scholar

[16] B. Nagarajam, Y. Wang, M. Taheri, S. Trudel, S. Bryant, A.J. Qureshi, P. Mertiny, Development and Characterization of Field Structured Magnetic Composites, Polymers 13 (2021) 2843.

DOI: 10.3390/polym13172843

Google Scholar

[17] P. Maltoni, G. Barucca, B. Rutkowski, M.C. Spadaro, P.E. Jonsson, G. Varvaro, N. Yaacoub, J.A. De Toro, D. Peddis, R. Mathieu, Unravelling exchange coupling in ferrites nano-heterostructures, Small 20 (2024) 2304152.

DOI: 10.1002/smll.202304152

Google Scholar

[18] F. Wang, G. Hu, P. Zhang, T. Feng, Y. Wang, R. Sun, J. Zhang, Dependence of nucleation field on the size of soft phase in magnetic hard-soft exchange coupling nanocomposites, Coatings 14 (2024) 219.

DOI: 10.3390/coatings14020219

Google Scholar

[19] S.M. Hoque, C. Srivastava, V. Kumar, N. Venkatesh, H.N. Das, Exchange-spring mechanism of sift and hard ferrite nanocomposites, Mater. Res. Bull. 48 (2013) 2871-2877.

DOI: 10.1016/j.materresbull.2013.04.009

Google Scholar

[20] J. Yoo & Y. Kang, Electromagnetic wave absorbing properties of Ni-Zn ferrite powder-epoxy composites in GHz range, J. Magn. Magn. Mater. 513 (2020) 167075.

DOI: 10.1016/j.jmmm.2020.167075

Google Scholar

[21] J. Kang, C. Sun, J. Kim, J. You, M. Jang, J.W. Jeong, Y. Heo, Y. Kim, Local probing of eddy current correlated with magnetic properties, Appl. Phys. Lett. 123 (2023) 242401.

DOI: 10.1063/5.0173887

Google Scholar

[22] N. Jahan, M.N.I. Khan, M.R. Hasan, M.S. Bashar, A. Islam, M.K. Alam, M.A. Hakim, J.I. Khandaker, Correlation among the structural, electric and magnetic properties of Al3+ substituted Ni-Zn-Co ferrites, RSC Adv. 12 (2022) 15167-15179.

DOI: 10.1039/d1ra09354a

Google Scholar