[1]
Dudina, D.V., et al., Structural features of tantalum carbide-copper composites obtained by liquid phase-assisted spark plasma sintering. Ceramics International, 2022. 48(21): pp.32556-32560.
DOI: 10.1016/j.ceramint.2022.07.322
Google Scholar
[2]
Moghadasi, K., et al., A review on biomedical implant materials and the effect of friction stir-based techniques on their mechanical and tribological properties. Journal of Materials Research and Technology, 2022.
Google Scholar
[3]
Babaremu, K.O., et al., Mechanical, corrosion resistance properties and various applications of titanium and its alloys: a review. Revue des Composites et des Matériaux Avancés, 2022. 32(1): p.11.
DOI: 10.18280/rcma.320102
Google Scholar
[4]
Bai, H., et al., A review on wear-resistant coating with high hardness and high toughness on the surface of titanium alloy. Journal of Alloys and Compounds, 2021. 882: p.160645.
DOI: 10.1016/j.jallcom.2021.160645
Google Scholar
[5]
Abakay, E., et al., Advances in improving tribological performance of titanium alloys and titanium matrix composites for biomedical applications: a critical review. Frontiers in Materials, 2024. 11: p.1452288.
DOI: 10.3389/fmats.2024.1452288
Google Scholar
[6]
Olorundaisi, E., et al., Phase prediction, microstructure, and mechanical properties of spark plasma sintered Ni–Al–Ti–Mn–Co–Fe–Cr high entropy alloys. Discover Nano, 2023. 18(1):p.117.
DOI: 10.1186/s11671-023-03889-3
Google Scholar
[7]
Ogunmefun, A.O., et al., Influence of sintering temperature on Ti6Al4V-Si3N4-ZrO2 ternary composites prepared by spark plasma sintering. Manufacturing Review, 2024. 11: p.5.
DOI: 10.1051/mfreview/2024004
Google Scholar
[8]
Chen, Q., et al., Thermal Shock Behavior of Si3N4/BN Fibrous Monolithic Ceramics. Materials, 2023. 16(19): p.6377.
DOI: 10.3390/ma16196377
Google Scholar
[9]
Nisar, A., et al., Unconventional materials processing using spark plasma sintering. Ceramics, 2021. 4(1): pp.20-39.
DOI: 10.3390/ceramics4010003
Google Scholar
[10]
Kgoete, F., et al., Influence of Si3N4 on Ti-6Al-4V via spark plasma sintering: Microstructure, corrosion and thermal stability. Journal of Alloys and Compounds, 2018. 763: pp.322-328.
DOI: 10.1016/j.jallcom.2018.05.220
Google Scholar
[11]
Abe, J., A. Popoola, and O. Popoola, Consolidation of Ti6Al4V alloy and refractory nitride nanoparticles by spark plasma sintering method: Microstructure, mechanical, corrosion and oxidation characteristics. Materials Science and Engineering: A, 2020. 774: p.138920.
DOI: 10.1016/j.msea.2020.138920
Google Scholar
[12]
Ogunmefun, O.A., et al., Densification, microstructure, and nanomechanical evaluation of pulsed electric sintered zirconia-silicon nitride reinforced Ti-6Al-4 V alloy. The International Journal of Advanced Manufacturing Technology, 2024. 130(7): pp.3649-3660.
DOI: 10.1007/s00170-023-12873-1
Google Scholar
[13]
Sayyadi-Shahraki, A., et al., Densification and mechanical properties of spark plasma sintered Si3N4/ZrO2 nano-composites. Journal of Alloys and Compounds, 2019. 776: pp.798-806.
DOI: 10.1016/j.jallcom.2018.10.243
Google Scholar
[14]
Cao, L., et al., Investigation on mechanical properties and microstructure of silicon nitride ceramics fabricated by spark plasma sintering. Materials Science and Engineering: A, 2018. 731: pp.595-602.
DOI: 10.1016/j.msea.2018.06.093
Google Scholar
[15]
Gonabadi, H., et al., Investigation of the effects of environmental fatigue on the mechanical properties of GFRP composite constituents using nanoindentation. Experimental Mechanics, 2022. 62(4): pp.585-602.
DOI: 10.1007/s11340-021-00808-4
Google Scholar
[16]
Sun, Z., et al., Influence of particle size distribution, test time, and moisture content on sandy stratum LCPC abrasivity test results. Bulletin of Engineering Geology and the Environment, 2021. 80: pp.611-625.
DOI: 10.1007/s10064-020-01927-3
Google Scholar
[17]
Oguntuyi, S., et al., The effects of sintering additives on the ceramic matrix composite of ZrO2: microstructure, densification, and mechanical properties–a review. Advances in Applied Ceramics, 2021. 120(5-8): pp.319-335.
DOI: 10.1080/17436753.2021.1953845
Google Scholar
[18]
Fang, X., Mechanical tailoring of dislocations in ceramics at room temperature: A perspective. Journal of the American Ceramic Society, 2024. 107(3): pp.1425-1447.
DOI: 10.1111/jace.19362
Google Scholar
[19]
Porz, L., 60 years of dislocations in ceramics: A conceptual framework for dislocation mechanics in ceramics. International Journal of Ceramic Engineering & Science, 2022. 4(4): pp.214-239.
DOI: 10.1002/ces2.10150
Google Scholar
[20]
Sun, X., et al., Research Progress in Ceramic–Metal Composites: Designing Interface Structures for High Mechanical Performance. Small Methods, 2025: p.2402100.
Google Scholar
[21]
Zhong, Z., et al., Recent research on the optimization of interfacial structure and interfacial interaction mechanisms of metal matrix composites: A review. Advanced Engineering Materials, 2024. 26(23): p.2401392.
DOI: 10.1002/adem.202401392
Google Scholar
[22]
Krishnan, K.M., Principles of materials characterization and metrology. 2021: Oxford University Press.
Google Scholar
[23]
Treccani, L., Introduction to ceramic materials. Surface‐Functionalized Ceramics: For Biotechnological and Environmental Applications, 2023: pp.1-46.
DOI: 10.1002/9783527698042.ch1
Google Scholar
[24]
Kumaraswamy, H., et al. Microstructure and mechanical properties of sintered Al 2024 hybrid MMCs. in Journal of Physics: Conference Series. 2020. IOP Publishing.
Google Scholar
[25]
Hamid, F.S., et al., Synthesis and characterization of titanium carbide and/or alumina nanoparticle reinforced copper matrix composites by spark plasma sintering. Journal of Materials Engineering and Performance, 2022. 31(7): pp.5583-5592.
DOI: 10.1007/s11665-022-06639-1
Google Scholar
[26]
Verma, V. and A. Khvan, A short review on Al MMC with reinforcement addition effect on their mechanical and wear behaviour. Advances in Composite Materials Development, 2019.
DOI: 10.5772/intechopen.83584
Google Scholar
[27]
Fer, B., et al., Powder metallurgy processing and mechanical properties of controlled Ti-24Nb-4Zr-8Sn heterogeneous microstructures. Metals, 2020. 10(12): p.1626.
DOI: 10.3390/met10121626
Google Scholar
[28]
Anamu, U.S., et al. Process Optimization of Spark Plasma Sintered Parameters for Ti-Al-Cr-Nb-Ni-Cu-Co High Entropy Alloy by Response Surface Methodology. in Materials Science Forum. 2024. Trans Tech Publ.
DOI: 10.4028/p-0bsg8t
Google Scholar
[29]
Li, H., et al., Effect of heat treatment on microstructure evolution and mechanical properties of selective laser melted Ti–6Al–4V and TiB/Ti–6Al–4V composite: A comparative study. Materials Science and Engineering: A, 2021. 801: p.140415.
DOI: 10.1016/j.msea.2020.140415
Google Scholar
[30]
Randhawa, K.S., Advanced ceramics in energy storage applications: Batteries to hydrogen energy. Journal of Energy Storage, 2024. 98: p.113122.
DOI: 10.1016/j.est.2024.113122
Google Scholar
[31]
Shakirzyanov, R.I., et al., Exploring the influence of sintering temperature on the phase composition, mechanical strength, and dielectric constant of porous ca-stabilized zirconium dioxide ceramics. Discover Materials, 2024. 4(1): p.48.
DOI: 10.1007/s43939-024-00123-4
Google Scholar
[32]
Falodun, O.E., et al., Effect of TiN and TiCN additions on spark plasma sintered Ti–6Al–4V. Particulate Science and Technology, 2020. 38(2): pp.156-165.
DOI: 10.1080/02726351.2018.1515798
Google Scholar
[33]
Teber, A., et al., Effect of SPS process sintering on the microstructure and mechanical properties of nanocrystalline TiC for tool applications. International Journal of Refractory Metals and Hard Materials, 2012. 30(1): pp.64-70.
DOI: 10.1016/j.ijrmhm.2011.06.013
Google Scholar
[34]
Falodun, O.E., et al., Effect of sintering parameters on densification and microstructural evolution of nano-sized titanium nitride reinforced titanium alloys. Journal of Alloys and Compounds, 2018. 736: pp.202-210.
DOI: 10.1016/j.jallcom.2017.11.140
Google Scholar
[35]
Nishiyama, N., et al., Thermal expansion and PVT equation of state of cubic silicon nitride. Journal of the European Ceramic Society, 2019. 39(13): pp.3627-3633.
DOI: 10.1016/j.jeurceramsoc.2019.05.003
Google Scholar
[36]
Ogunmefun, O.A., et al., A critical review of dispersion strengthened titanium alloy fabricated through spark plasma sintering techniques. Journal of alloys and compounds, 2023. 960: p.170407.
DOI: 10.1016/j.jallcom.2023.170407
Google Scholar
[37]
Jarząbek, D.M., The impact of weak interfacial bonding strength on mechanical properties of metal matrix–ceramic reinforced composites. Composite Structures, 2018. 201: pp.352-362.
DOI: 10.1016/j.compstruct.2018.06.071
Google Scholar
[38]
Ayodele, O., et al., Densification and microstructures of hybrid sintering of titanium alloy. Materials Today: Proceedings, 2020. 28: pp.781-784.
DOI: 10.1016/j.matpr.2019.12.297
Google Scholar