[1]
D.X. Guan, C. Ren, J. Wang, Y. Zhu, Z. Zhu, W. Li, Characterization of Lead Uptake by Nano-Sized Hydroxyapatite: A Molecular Scale Perspective, ACS Earth Space Chem. 2 (2018) 599-606
DOI: 10.1021/acsearthspacechem.8b00020
Google Scholar
[2]
Y. Sun, K.M. Ho, V. Antropov, Metallization and spin fluctuations in Cu-doped lead apatite, Phys. Rev. Mater. 7 (2023) 114804
DOI: 10.1103/PhysRevMaterials.7.114804
Google Scholar
[3]
X. Hu, S. Jiang, T. Feng, Z. Huang, S. Dong, J. Zhang, In-situ observation of Kr2+ irradiation induced amorphization on Ca10-xLax(PO4)6-x(SiO4)xF2 (x=1, 2 and 6), J. Nucl. Mater. 573 (2023) 154120
DOI: 10.1016/j.jnucmat.2022.154120
Google Scholar
[4]
M.A. Abdul Jabar, New Solid-Solutions of Substitution Strontium (Sr) for Lead (Pb) in Apatite Structure, Chem. Chem. Technol. 17 (2023) 719-728
DOI: 10.23939/chcht17.04.719
Google Scholar
[5]
M.A. Abdul Jabar, A.V. Ignatov, New Synthesis of Solid-Solution Lead Hydroxyapatite (PbHAP) by Ceramic and Semi-Ceramic Methods, J. Chem. Soc. Pak. 42 (2020) 363-368
DOI: 10.52568/000655
Google Scholar
[6]
M.Y. Toriyama, C.-W. Lee, G.J. Snyder, P. Gorai, Defect Chemistry and Doping of Lead Phosphate Oxo Apatite Pb10(PO4)6O, ACS Energy Lett. 9 (2024) 428-431
DOI: 10.1021/acsenergylett.3c02544
Google Scholar
[7]
M.A. Abdul Jabar, Studying Solid Solutions of Substitution of Pb with Sm in Lead-Sodium Apatite Structure, Nanosist. Nanomater. Nanotehnol. 17 (2019) 343-352
DOI: 10.15407/nnn.17.02.343
Google Scholar
[8]
J. Shen, D. Gaines, S. Shahabfar, S. Li, D. Kang, S. Griesemer, A. Salgado-Casanova, T. Liu, C. Chou, Y. Xia, C. Wolverton, Phase Stability of Lead Phosphate Apatite Pb10-xCux(PO4)6O, Pb10-xCux(PO4)6(OH)2 (x = 0, 1), and Pb8Cu2(PO4)6, Chem. Mater. 36 (2024) 275-285
DOI: 10.1021/acs.chemmater.3c02054
Google Scholar
[9]
Y. Yan, F. Qi, S. Zhao, Y. Luo, S. Gu, Q. Li, N. Bolan, A new low-cost hydroxyapatite for efficient immobilization of lead, J. Colloid Interface Sci. 553 (2019) 798-804
DOI: 10.1016/j.jcis.2019.06.090
Google Scholar
[10]
S. Attar Nosrati, M.R. Aboudzadeh, M. Amiri, M. Salahinejad, Preparation of Pt-doped hydroxyapatite via wet co-precipitation method, J. Aust. Ceram. Soc. 60 (2024) 791–797
DOI: 10.1007/s41779-024-01023-9
Google Scholar
[11]
M.A. Abdul Jabar, Synthesis of Sodium-Lead Apatite Structure with the Excess and the Lack of Sodium, Iraqi J. Sci. 64 (2023) 2129-2134
DOI: 10.24996/ijs.2023.64.5.2
Google Scholar
[12]
Crystal Impact, Match! - Phase Identification from Powder Diffraction, Version 3.12, Crystal Impact, Bonn, Germany, 2023. https://www.crystalimpact.com/match/
Google Scholar
[13]
M. Singh, P. Saha, K. Kumar, D. Takhar, B. Birajdar, V. Awana, Electromagnetic properties of copper doped lead apatite Pb10-xCux(PO4)6O, J. Mater. Sci. 59 (2024) 1464-1471
DOI: 10.1007/s10853-023-09261-1
Google Scholar
[14]
M.A. Abdul Jabar, E.I. Get'man, A.V. Ignatov, New gadolinium-substituted lead sodium apatite structure, Funct. Mater. 25 (2018) 713-719
DOI: 10.15407/fm25.04.713
Google Scholar
[15]
E.O. López, P.L. Bernardo, N.R. Checca, A.L. Rossi, A. Mello, D.E. Ellis, J. Terra, Hydroxyapatite and lead-substituted hydroxyapatite near-surface structures: Novel modelling of photoemission lines from X-ray photoelectron spectra, Appl. Surf. Sci. 571 (2022) 151310
DOI: 10.1016/j.apsusc.2021.151310
Google Scholar
[16]
Y. Wang, R. Li, W. Liu, L. Cheng, Q. Jiang, Y. Zhang, Exploratory of immobilization remediation of hydroxyapatite (HAP) on lead-contaminated soils, Environ. Sci. Pollut. Res. 26 (2019) 26674-26684
DOI: 10.1007/s11356-019-05887-4
Google Scholar
[17]
S. Omar, M.S. Muhamad, L. T. Chuan, T. Hadibarata, Z. C. Teh, A Review on Lead Sources, Occurrences, Health Effects, and Treatment Using Hydroxyapatite (HAp) Adsorbent Made from Fish Waste, Water Air Soil Pollut. 230 (2019) 275
DOI: 10.1007/s11270-019-4312-9
Google Scholar
[18]
G. Prashar, H. Vasudev, Understanding cold spray technology for hydroxyapatite deposition, J. Electrochem. Sci. Eng. 13 (2023) 41-62
DOI: 10.5599/jese.1424
Google Scholar
[19]
M. Bembli, R. Khiari, M. Hidouri, K. Boughzala, Structural and Electric Properties of Lanthanide Doped Oxybritholites Materials, Chem. Afr. 7 (2024) 2235-2252
DOI: 10.1007/s42250-023-00855-5
Google Scholar
[20]
B. Demir, E. Ayas, Effects of sintering temperature and doping content on luminescence properties of rare earth (Sm+3, Eu3+, and Dy3+) doped natural fluorapatite, J. Solid State Chem. 306 (2022) 122783
DOI: 10.1016/j.jssc.2021.122783
Google Scholar
[21]
A. Neuer, G. Bikelytė, M. Lommel, T.M. Klapötke, Thermochemical Investigation of Tetrazole-Based Green Explosive Motifs: Experimental Vapor Pressures of N-(Fluoro)methylated Aminotetrazoles, J. Chem. Eng. Data. 67 (2022) 3457-3467
DOI: 10.1021/acs.jced.2c00396
Google Scholar
[22]
M.A.B. Abdul Jabar, Synthesis of Sodium Lanthanum Lead Chloride Apatite Structure at High Temperatures, Adv. J. Chem. Sect. A. 8 (2025) 17-26
Google Scholar
[23]
L. Omodara, S. Pitkäaho, E.M. Turpeinen, P. Saavalainen, K. Oravisjärvi, R.L. Keiski, Recycling and substitution of light rare earth elements, cerium, lanthanum, neodymium, and praseodymium from end-of-life applications - A review, J. Clean. Prod. 236 (2019) 117573
DOI: 10.1016/j.jclepro.2019.07.048
Google Scholar
[24]
B. Puzio, L. Zhang, J.E. Szymanowski, P.C. Burns, M. Manecki, Thermodynamic characterization of synthetic lead-arsenate apatites with different halogen substitutions, Am. Mineral. 108 (2023) 675-685
DOI: 10.2138/am-2020-7452
Google Scholar
[25]
W. Akdvk, M.S. Fernando, K. Dziemidowicz, G.R. Williams, K.R. Koswattage, D.P. Dissanayake, K.N. de Silva, R.M. de Silva, Structure–Activity Relationship of Lanthanide-Incorporated Nano-Hydroxyapatite for the Adsorption of Fluoride and Lead, ACS Omega. 6 (2021) 13527-13543
DOI: 10.1021/acsomega.0c05935
Google Scholar
[26]
C. Zhou, X. Wang, X. Song, Y. Wang, D. Fang, S. Ge, R. Zhang, Insights into dynamic adsorption of lead by nano-hydroxyapatite prepared with two-stage ultrasound, Chemosphere. 253 (2020) 126661
DOI: 10.1016/j.chemosphere.2020.126661
Google Scholar
[27]
A. Ramdani, A. Kadeche, M. Adjdir, Z. Taleb, D. Ikhou, S. Taleb, A. Deratani, Lead and cadmium removal by adsorption process using hydroxyapatite porous materials, Water Pract. Technol. 15 (2020) 130-141
DOI: 10.2166/wpt.2020.003
Google Scholar
[28]
M.A.B. Abdul Jabar, Substitution of praseodymium by lead in Pb8Na2(PO4)6 at 850°C, Funct. Mater. 31 (2024) 336-340
DOI: 10.15407/fm31.03.336
Google Scholar
[29]
F. Safatian, Z. Doago, M. Torabbeigi, H. R. Shams, N. Ahadi, Lead ion removal from water by hydroxyapatite nanostructures synthesized from egg sells with microwave irradiation, Appl. Water Sci. 9 (2019) 108
DOI: 10.1007/s13201-019-0979-8
Google Scholar
[30]
L. El Hammari, R. Hamed, K. Azzaoui, S. Jodeh, S. Latifi, S. Saoiabi, O. Dagdag, Optimization of the adsorption of lead (II) by hydroxyapatite using a factorial design: Density functional theory and molecular dynamics, Front. Environ. Sci. 11 (2023) 1112019
DOI: 10.3389/fenvs.2023.1112019
Google Scholar
[31]
E.I. Getman, A.V. Ignatov, S.N. Loboda, M.A.B. Abdul Jabar, A.O. Zhegailo, A.S. Gluhova, Substitution of samarium for strontium in the structure of hydroxyapatite, Funct. Mater. 18 (2011) 293-297. http://functmaterials.org.ua/contents/18-3/fm183-02.pdf
Google Scholar
[32]
A. A. Mohammed, E. S. Al-Hassani, J. K. Oleiwi, In Vitro Study: Bioactivity, Biocompatibility and Antibacterial Behavior for Polyetheretherketone Composites, J. Biomim. Biomater. Biomed. Eng. 63 (2023) 11-26
DOI: 10.4028/p-2faOvI
Google Scholar
[33]
A. A. Mohammed, J. K. Oleiwi, E. S. Al-Hassani, Heat Treatment Effect on Biological Behavior of Polyetheretherketone Composites, J. Biomim. Biomater. Biomed. Eng. 54 (2022) 119-128
DOI: 10.4028/www.scientific.net/JBBBE.54.119
Google Scholar
[34]
M. Safari-Gezaz, M. Parhizkar, E. Asghari, Effect of cobalt ions doping on morphology and electrochemical properties of hydroxyapatite coatings for biomedical applications, Sci. Rep. 15 (2025) 149
DOI: 10.1038/s41598-024-84055-2
Google Scholar
[35]
K. Kthiri, M. Mehnaoui, N. Ihzaz, M. Hidouri, Lanthanides-strontium oxyapatites containing magnesium electrolyte for solid oxide fuel cells: Structure and ionic conductivity, Mater. Chem. Phys. 340 (2025) 130787
DOI: 10.1016/j.matchemphys.2025.130787
Google Scholar
[36]
Q. Xiao, X. Xu, X. Le, S. Yang, Insight into the interaction mechanisms of toxic cadmium and lead with calcite/phosphate composite solids, J. Hazard. Mater. 492 (2025) 138320
DOI: 10.1016/j.jhazmat.2025.138320
Google Scholar
[37]
M. A.B. Abdul Jabar, M. Abdul Jabar, Structural and Chemical Characterization of Lanthanum-Doped Fluoroapatite Compounds Synthesized Via Solid-State Reaction, Adv. J. Chem. Sect. A. 8 (2025) 961-970
Google Scholar
[38]
J. H. Won, M. K. Kim, H. Oh, H. M. Jeong, Scalable production of visible light photocatalysts with extended nanojunctions of WO3/g-C3N4 using zeta potential and phase control in sol-gel process, Appl. Surf. Sci. 612 (2023) 155838
DOI: 10.1016/j.apsusc.2022.155838
Google Scholar
[39]
X. Lian, Z. Huang, Y. Zhang, Z. Chen, P. Meidl, X. Yi, B. Xu. Constructing Z-scheme 1D/2D heterojunction of ZnIn2S4 nanosheets decorated WO3 nanorods to enhance Cr (VI) photocatalytic reduction and rhodamine B degradation, Chemosphere. 313 (2023) 137351
DOI: 10.1016/j.chemosphere.2022.137351
Google Scholar
[40]
M. A. Bhatti, K. F. Almani, A. A. Shah, A. Tahira, I. A. Chana, U. Aftab, M. H. Ibupoto, A. N. Mirjat, A. Aboelmaaref, A. Nafady, B. Vigolo, Z. H. Ibupoto, Renewable and eco-friendly ZnO immobilized onto Dead Sea sponge floating materials with dual practical aspects for enhanced photocatalysis and disinfection applications, Nanotechnology. 34 (2023) 035602
DOI: 10.1088/1361-6528/ac98cc
Google Scholar
[41]
U. Solecka, B. Puzio, M. Kersten, J. Topolska, M. Manecki, T. Bajda, Solubility of Mimetite Pb5(AsO4)3Cl – Vanadinite Pb5(VO4)3Cl Solid Solution Series at 5–65 °C, Chem. Geol. 675 (2025) 122609
DOI: 10.1016/j.chemgeo.2024.122609
Google Scholar
[42]
S. Ozer, N. Dogan, S. Canim-Ates, A. Bingolbali, Synthesis and Characterization of Coated CoFe2O4 Nanoparticles with Biocompatible Compounds and In Vitro Toxicity Assessment on Glioma Cell Lines, Adv. Mater. Interfaces. 12 (2025) 2400613
DOI: 10.1002/admi.202400613
Google Scholar
[43]
N. A. Boldyrev, E. S. Esin, L. A. Shilkina, S. I. Dudkina, A. V. Nagaenko, L. A. Reznichenko, Effect of Superstoichiometric Bismuth Addition on the Structure and Dielectric Characteristics of the Solid Solutions (1−x)BiFeO3-xBaTiO3, Ceramics. 8 (2025) 7
DOI: 10.3390/ceramics8010007
Google Scholar
[44]
J. d. Bona, L.H.d.S. Lacerda, Decoding the photocatalytic and biocide properties of tetragonal and orthorhombic AgNbO3 surfaces, Surf. Interfaces. 59 (2025) 105979
DOI: 10.1016/j.surfin.2025.105979
Google Scholar
[45]
L. Herráez-Santos, D. Goma-Jiménez, M. P. Yeste-Sigüenza, M. A. Cauqui-López, A. García-García, On the Selection of Catalysts' Support with High Oxygen Delivery Capacity for DRM Application: Interest of Praseodymium as Dopant of Ceria, Top. Catal. 68 (2025) 82-98
DOI: 10.1007/s11244-024-01997-7
Google Scholar