Synthesis and Characterization of Lead Hydroxyapatite Solid Solutions at 830°C

Article Preview

Abstract:

Lead hydroxyapatite (PbHAP, chemical formula Pb10(PO4)6(OH)2) has been synthesized by ceramic (solid-state reaction) and semi-ceramic (precipitation) methods. The samples were prepared through a solid-state reaction conducted at 830 °C for 60 hours, with the y values ranging from 0.95 to 1.00. We have developed and created the most efficient preparation methods. The well-known technique was used - semi-ceramic (precipitation) deposition of lead and hydroxyapatite. For this purpose, several advanced devices were used to obtain an accurate structural structure of lead hydroxyapatite compounds. It has been observed, as in the case of chemical synthesis, that the elements (lead, phosphorus, and oxygen) appear to be distributed homogeneously within the crystals, regardless of the method of composition, which indicates that the samples are homogeneous. More importantly, the "solid-state reaction" method favored a specific composition range, while the "precipitation" method performed well for other composition ranges. The above methods indicate an ideal method, according to the desired structure, that should be developed for lead hydroxyapatite, depending on its composition. This research aims to establish the first steps in developing a new method for preparing lead hydroxyapatite compounds with the desired properties to improve their purity and crystal structure for potential uses in the future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-111

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.X. Guan, C. Ren, J. Wang, Y. Zhu, Z. Zhu, W. Li, Characterization of Lead Uptake by Nano-Sized Hydroxyapatite: A Molecular Scale Perspective, ACS Earth Space Chem. 2 (2018) 599-606

DOI: 10.1021/acsearthspacechem.8b00020

Google Scholar

[2] Y. Sun, K.M. Ho, V. Antropov, Metallization and spin fluctuations in Cu-doped lead apatite, Phys. Rev. Mater. 7 (2023) 114804

DOI: 10.1103/PhysRevMaterials.7.114804

Google Scholar

[3] X. Hu, S. Jiang, T. Feng, Z. Huang, S. Dong, J. Zhang, In-situ observation of Kr2+ irradiation induced amorphization on Ca10-xLax(PO4)6-x(SiO4)xF2 (x=1, 2 and 6), J. Nucl. Mater. 573 (2023) 154120

DOI: 10.1016/j.jnucmat.2022.154120

Google Scholar

[4] M.A. Abdul Jabar, New Solid-Solutions of Substitution Strontium (Sr) for Lead (Pb) in Apatite Structure, Chem. Chem. Technol. 17 (2023) 719-728

DOI: 10.23939/chcht17.04.719

Google Scholar

[5] M.A. Abdul Jabar, A.V. Ignatov, New Synthesis of Solid-Solution Lead Hydroxyapatite (PbHAP) by Ceramic and Semi-Ceramic Methods, J. Chem. Soc. Pak. 42 (2020) 363-368

DOI: 10.52568/000655

Google Scholar

[6] M.Y. Toriyama, C.-W. Lee, G.J. Snyder, P. Gorai, Defect Chemistry and Doping of Lead Phosphate Oxo Apatite Pb10(PO4)6O, ACS Energy Lett. 9 (2024) 428-431

DOI: 10.1021/acsenergylett.3c02544

Google Scholar

[7] M.A. Abdul Jabar, Studying Solid Solutions of Substitution of Pb with Sm in Lead-Sodium Apatite Structure, Nanosist. Nanomater. Nanotehnol. 17 (2019) 343-352

DOI: 10.15407/nnn.17.02.343

Google Scholar

[8] J. Shen, D. Gaines, S. Shahabfar, S. Li, D. Kang, S. Griesemer, A. Salgado-Casanova, T. Liu, C. Chou, Y. Xia, C. Wolverton, Phase Stability of Lead Phosphate Apatite Pb10-xCux(PO4)6O, Pb10-xCux(PO4)6(OH)2 (x = 0, 1), and Pb8Cu2(PO4)6, Chem. Mater. 36 (2024) 275-285

DOI: 10.1021/acs.chemmater.3c02054

Google Scholar

[9] Y. Yan, F. Qi, S. Zhao, Y. Luo, S. Gu, Q. Li, N. Bolan, A new low-cost hydroxyapatite for efficient immobilization of lead, J. Colloid Interface Sci. 553 (2019) 798-804

DOI: 10.1016/j.jcis.2019.06.090

Google Scholar

[10] S. Attar Nosrati, M.R. Aboudzadeh, M. Amiri, M. Salahinejad, Preparation of Pt-doped hydroxyapatite via wet co-precipitation method, J. Aust. Ceram. Soc. 60 (2024) 791–797

DOI: 10.1007/s41779-024-01023-9

Google Scholar

[11] M.A. Abdul Jabar, Synthesis of Sodium-Lead Apatite Structure with the Excess and the Lack of Sodium, Iraqi J. Sci. 64 (2023) 2129-2134

DOI: 10.24996/ijs.2023.64.5.2

Google Scholar

[12] Crystal Impact, Match! - Phase Identification from Powder Diffraction, Version 3.12, Crystal Impact, Bonn, Germany, 2023. https://www.crystalimpact.com/match/

Google Scholar

[13] M. Singh, P. Saha, K. Kumar, D. Takhar, B. Birajdar, V. Awana, Electromagnetic properties of copper doped lead apatite Pb10-xCux(PO4)6O, J. Mater. Sci. 59 (2024) 1464-1471

DOI: 10.1007/s10853-023-09261-1

Google Scholar

[14] M.A. Abdul Jabar, E.I. Get'man, A.V. Ignatov, New gadolinium-substituted lead sodium apatite structure, Funct. Mater. 25 (2018) 713-719

DOI: 10.15407/fm25.04.713

Google Scholar

[15] E.O. López, P.L. Bernardo, N.R. Checca, A.L. Rossi, A. Mello, D.E. Ellis, J. Terra, Hydroxyapatite and lead-substituted hydroxyapatite near-surface structures: Novel modelling of photoemission lines from X-ray photoelectron spectra, Appl. Surf. Sci. 571 (2022) 151310

DOI: 10.1016/j.apsusc.2021.151310

Google Scholar

[16] Y. Wang, R. Li, W. Liu, L. Cheng, Q. Jiang, Y. Zhang, Exploratory of immobilization remediation of hydroxyapatite (HAP) on lead-contaminated soils, Environ. Sci. Pollut. Res. 26 (2019) 26674-26684

DOI: 10.1007/s11356-019-05887-4

Google Scholar

[17] S. Omar, M.S. Muhamad, L. T. Chuan, T. Hadibarata, Z. C. Teh, A Review on Lead Sources, Occurrences, Health Effects, and Treatment Using Hydroxyapatite (HAp) Adsorbent Made from Fish Waste, Water Air Soil Pollut. 230 (2019) 275

DOI: 10.1007/s11270-019-4312-9

Google Scholar

[18] G. Prashar, H. Vasudev, Understanding cold spray technology for hydroxyapatite deposition, J. Electrochem. Sci. Eng. 13 (2023) 41-62

DOI: 10.5599/jese.1424

Google Scholar

[19] M. Bembli, R. Khiari, M. Hidouri, K. Boughzala, Structural and Electric Properties of Lanthanide Doped Oxybritholites Materials, Chem. Afr. 7 (2024) 2235-2252

DOI: 10.1007/s42250-023-00855-5

Google Scholar

[20] B. Demir, E. Ayas, Effects of sintering temperature and doping content on luminescence properties of rare earth (Sm+3, Eu3+, and Dy3+) doped natural fluorapatite, J. Solid State Chem. 306 (2022) 122783

DOI: 10.1016/j.jssc.2021.122783

Google Scholar

[21] A. Neuer, G. Bikelytė, M. Lommel, T.M. Klapötke, Thermochemical Investigation of Tetrazole-Based Green Explosive Motifs: Experimental Vapor Pressures of N-(Fluoro)methylated Aminotetrazoles, J. Chem. Eng. Data. 67 (2022) 3457-3467

DOI: 10.1021/acs.jced.2c00396

Google Scholar

[22] M.A.B. Abdul Jabar, Synthesis of Sodium Lanthanum Lead Chloride Apatite Structure at High Temperatures, Adv. J. Chem. Sect. A. 8 (2025) 17-26

Google Scholar

[23] L. Omodara, S. Pitkäaho, E.M. Turpeinen, P. Saavalainen, K. Oravisjärvi, R.L. Keiski, Recycling and substitution of light rare earth elements, cerium, lanthanum, neodymium, and praseodymium from end-of-life applications - A review, J. Clean. Prod. 236 (2019) 117573

DOI: 10.1016/j.jclepro.2019.07.048

Google Scholar

[24] B. Puzio, L. Zhang, J.E. Szymanowski, P.C. Burns, M. Manecki, Thermodynamic characterization of synthetic lead-arsenate apatites with different halogen substitutions, Am. Mineral. 108 (2023) 675-685

DOI: 10.2138/am-2020-7452

Google Scholar

[25] W. Akdvk, M.S. Fernando, K. Dziemidowicz, G.R. Williams, K.R. Koswattage, D.P. Dissanayake, K.N. de Silva, R.M. de Silva, Structure–Activity Relationship of Lanthanide-Incorporated Nano-Hydroxyapatite for the Adsorption of Fluoride and Lead, ACS Omega. 6 (2021) 13527-13543

DOI: 10.1021/acsomega.0c05935

Google Scholar

[26] C. Zhou, X. Wang, X. Song, Y. Wang, D. Fang, S. Ge, R. Zhang, Insights into dynamic adsorption of lead by nano-hydroxyapatite prepared with two-stage ultrasound, Chemosphere. 253 (2020) 126661

DOI: 10.1016/j.chemosphere.2020.126661

Google Scholar

[27] A. Ramdani, A. Kadeche, M. Adjdir, Z. Taleb, D. Ikhou, S. Taleb, A. Deratani, Lead and cadmium removal by adsorption process using hydroxyapatite porous materials, Water Pract. Technol. 15 (2020) 130-141

DOI: 10.2166/wpt.2020.003

Google Scholar

[28] M.A.B. Abdul Jabar, Substitution of praseodymium by lead in Pb8Na2(PO4)6 at 850°C, Funct. Mater. 31 (2024) 336-340

DOI: 10.15407/fm31.03.336

Google Scholar

[29] F. Safatian, Z. Doago, M. Torabbeigi, H. R. Shams, N. Ahadi, Lead ion removal from water by hydroxyapatite nanostructures synthesized from egg sells with microwave irradiation, Appl. Water Sci. 9 (2019) 108

DOI: 10.1007/s13201-019-0979-8

Google Scholar

[30] L. El Hammari, R. Hamed, K. Azzaoui, S. Jodeh, S. Latifi, S. Saoiabi, O. Dagdag, Optimization of the adsorption of lead (II) by hydroxyapatite using a factorial design: Density functional theory and molecular dynamics, Front. Environ. Sci. 11 (2023) 1112019

DOI: 10.3389/fenvs.2023.1112019

Google Scholar

[31] E.I. Getman, A.V. Ignatov, S.N. Loboda, M.A.B. Abdul Jabar, A.O. Zhegailo, A.S. Gluhova, Substitution of samarium for strontium in the structure of hydroxyapatite, Funct. Mater. 18 (2011) 293-297. http://functmaterials.org.ua/contents/18-3/fm183-02.pdf

Google Scholar

[32] A. A. Mohammed, E. S. Al-Hassani, J. K. Oleiwi, In Vitro Study: Bioactivity, Biocompatibility and Antibacterial Behavior for Polyetheretherketone Composites, J. Biomim. Biomater. Biomed. Eng. 63 (2023) 11-26

DOI: 10.4028/p-2faOvI

Google Scholar

[33] A. A. Mohammed, J. K. Oleiwi, E. S. Al-Hassani, Heat Treatment Effect on Biological Behavior of Polyetheretherketone Composites, J. Biomim. Biomater. Biomed. Eng. 54 (2022) 119-128

DOI: 10.4028/www.scientific.net/JBBBE.54.119

Google Scholar

[34] M. Safari-Gezaz, M. Parhizkar, E. Asghari, Effect of cobalt ions doping on morphology and electrochemical properties of hydroxyapatite coatings for biomedical applications, Sci. Rep. 15 (2025) 149

DOI: 10.1038/s41598-024-84055-2

Google Scholar

[35] K. Kthiri, M. Mehnaoui, N. Ihzaz, M. Hidouri, Lanthanides-strontium oxyapatites containing magnesium electrolyte for solid oxide fuel cells: Structure and ionic conductivity, Mater. Chem. Phys. 340 (2025) 130787

DOI: 10.1016/j.matchemphys.2025.130787

Google Scholar

[36] Q. Xiao, X. Xu, X. Le, S. Yang, Insight into the interaction mechanisms of toxic cadmium and lead with calcite/phosphate composite solids, J. Hazard. Mater. 492 (2025) 138320

DOI: 10.1016/j.jhazmat.2025.138320

Google Scholar

[37] M. A.B. Abdul Jabar, M. Abdul Jabar‬, Structural and Chemical Characterization of Lanthanum-Doped Fluoroapatite Compounds Synthesized Via Solid-State Reaction, Adv. J. Chem. Sect. A. 8 (2025) 961-970

Google Scholar

[38] J. H. Won, M. K. Kim, H. Oh, H. M. Jeong, Scalable production of visible light photocatalysts with extended nanojunctions of WO3/g-C3N4 using zeta potential and phase control in sol-gel process, Appl. Surf. Sci. 612 (2023) 155838

DOI: 10.1016/j.apsusc.2022.155838

Google Scholar

[39] X. Lian, Z. Huang, Y. Zhang, Z. Chen, P. Meidl, X. Yi, B. Xu. Constructing Z-scheme 1D/2D heterojunction of ZnIn2S4 nanosheets decorated WO3 nanorods to enhance Cr (VI) photocatalytic reduction and rhodamine B degradation, Chemosphere. 313 (2023) 137351

DOI: 10.1016/j.chemosphere.2022.137351

Google Scholar

[40] M. A. Bhatti, K. F. Almani, A. A. Shah, A. Tahira, I. A. Chana, U. Aftab, M. H. Ibupoto, A. N. Mirjat, A. Aboelmaaref, A. Nafady, B. Vigolo, Z. H. Ibupoto, Renewable and eco-friendly ZnO immobilized onto Dead Sea sponge floating materials with dual practical aspects for enhanced photocatalysis and disinfection applications, Nanotechnology. 34 (2023) 035602

DOI: 10.1088/1361-6528/ac98cc

Google Scholar

[41] U. Solecka, B. Puzio, M. Kersten, J. Topolska, M. Manecki, T. Bajda, Solubility of Mimetite Pb5(AsO4)3Cl – Vanadinite Pb5(VO4)3Cl Solid Solution Series at 5–65 °C, Chem. Geol. 675 (2025) 122609

DOI: 10.1016/j.chemgeo.2024.122609

Google Scholar

[42] S. Ozer, N. Dogan, S. Canim-Ates, A. Bingolbali, Synthesis and Characterization of Coated CoFe2O4 Nanoparticles with Biocompatible Compounds and In Vitro Toxicity Assessment on Glioma Cell Lines, Adv. Mater. Interfaces. 12 (2025) 2400613

DOI: 10.1002/admi.202400613

Google Scholar

[43] N. A. Boldyrev, E. S. Esin, L. A. Shilkina, S. I. Dudkina, A. V. Nagaenko, L. A. Reznichenko, Effect of Superstoichiometric Bismuth Addition on the Structure and Dielectric Characteristics of the Solid Solutions (1−x)BiFeO3-xBaTiO3, Ceramics. 8 (2025) 7

DOI: 10.3390/ceramics8010007

Google Scholar

[44] J. d. Bona, L.H.d.S. Lacerda, Decoding the photocatalytic and biocide properties of tetragonal and orthorhombic AgNbO3 surfaces, Surf. Interfaces. 59 (2025) 105979

DOI: 10.1016/j.surfin.2025.105979

Google Scholar

[45] L. Herráez-Santos, D. Goma-Jiménez, M. P. Yeste-Sigüenza, M. A. Cauqui-López, A. García-García, On the Selection of Catalysts' Support with High Oxygen Delivery Capacity for DRM Application: Interest of Praseodymium as Dopant of Ceria, Top. Catal. 68 (2025) 82-98

DOI: 10.1007/s11244-024-01997-7

Google Scholar