[1]
J. Fiocchi, A. Tuissi, C.A. Biffi, Heat treatment of aluminium alloys produced by laser powder bed fusion: A review. Online. Materials & Design. 2021, č. 204
DOI: 10.1016/j.matdes.2021.109651
Google Scholar
[2]
L. Růžičková, J. Soborová, L. Beránek, L. Pelikán, J. Šimota, Influence of Stress Relief Annealing Parameters on Mechanical Properties and Decomposition of Eutectic Si Network of L-PBF Additive Manufactured Alloy AlSi10Mg. Online. Metals. 2022, č. 12
DOI: 10.3390/met12091497
Google Scholar
[3]
J.G.S. Macías, T. Douillard, L. Zhao, E. Maie, G. Pyka et al., Influence on microstructure, strength and ductility of build platform temperature during laser powder bed fusion of AlSi10Mg. Online. Acta Materialia. 2020, č. 201, s. 231-243. https://doi.org/10.1016/j.actamat. 2020.10.001
DOI: 10.1016/j.actamat.2020.10.001
Google Scholar
[4]
J. Fite, S.E. Prameela, J.A. Slotwinski, T.P. Weihs, Evolution of the microstructure and mechanical properties of additively manufactured AlSi10Mg during room temperature holds and low temperature aging. Online. Additive Manufacturing. 2020, č. 36
DOI: 10.1016/j.addma.2020.101429
Google Scholar
[5]
L Zhao, J.G.S. Macías, L. Ding, H. Idrissi, A. Simar, Damage mechanisms in selective laser melted AlSi10Mg under as built and different post-treatment conditions. Online. Materials Science and Engineering: A. 2019, č. 764.
DOI: 10.1016/j.msea.2019.138210
Google Scholar
[6]
N. Limbasiya, A. Jain, H. Soni, V. Wankhede, G. Krolczyk et al., A comprehensive review on the effect of process parameters and post-process treatments on microstructure and mechanical properties of selective laser melting of AlSi10Mg. Online. Journal of Materials Research and Technology. 2022, č. 21, s. 1141-1176. ISSN 2238-7854. https://doi.org/.
DOI: 10.1016/j.jmrt.2022.09.092
Google Scholar
[7]
J. Praneeth, S. Venkatesh, L.S. Krishna, Process parameters influence on mechanical properties of AlSi10Mg by SLM. Online. Materials Today: Proceedings. 2023. ISSN 2214-7853. https://doi.org/.
DOI: 10.1016/j.matpr.2022.12.222
Google Scholar
[8]
L. Minkowitz, S. Arneitz, P.S. Effertz, S.T. Amancio-Filho, Laser-powder bed fusion process optimisation of AlSi10Mg using extra trees regression. Online. Materials & Design. 2023, č. 227. ISSN 0264-1275. https://doi.org/
DOI: 10.1016/j.matdes.2023.111718
Google Scholar
[9]
J.H. Tan, W.L.E. Wong, K.W. Dalgarno, An overview of powder granulometry on feedstock and part performance in the selective laser melting process. Online. Additive Manufacturing. 2017, č. 18, s. 228-255. https://doi.org/
DOI: 10.1016/j.addma.2017.10.011
Google Scholar
[10]
K. Riener, N. Albrecht, S. Ziegelmeier, R. Ramakrishnan, L. Haferkamp et al, Influence of particle size distribution and morphology on the properties of the powder feedstock as well as of AlSi10Mg parts produced by laser powder bed fusion (LPBF). Online. Additive Manufacturing. Č. 34. ISSN 2214-8604. https://doi.org/https://doi.org/10.1016/j.addma. 2020.101286.
DOI: 10.1016/j.addma.2020.101286
Google Scholar
[11]
T. Fedina, F. Belelli, G. Lupi, B. Brandau, R. Casati et al., Influence of AlSi10Mg powder aging on the material degradation and its processing in laser powder bed fusion. Online. Powder Technology. Č. 412. ISSN 0032-5910. https://doi.org/https://doi.org/10.1016/j.powtec. 2022.118024.
DOI: 10.1016/j.powtec.2022.118024
Google Scholar
[12]
P. Moghimian, T. Poirié, M. Habibnejad-Korayem, J.A. Zavala, J. Kroeger et al., Metal powders in additive manufacturing: A review on reusability and recyclability of common titanium, nickel and aluminum alloys. Online. Additive Manufacturing. Č. 43. ISSN 2214-8604. https://doi.org/.
DOI: 10.1016/j.addma.2021.102017
Google Scholar
[13]
N. Chambrin, O. Dalverny, J.-M. Cloue, O. Brucelle, J. Alexis, In Situ Ageing with the Platform Preheating of AlSi10Mg Alloy Manufactured by Laser Powder-Bed Fusion Process. Online. Metals. 2022, č. 12. https://doi.org/.
DOI: 10.3390/met12122148
Google Scholar
[14]
S. Zhu, I. Katti, D. Qiu, J.H. Forsmark, M.A. Easton, Microstructural analysis of the influences of platform preheating and post-build heat treatment on mechanical properties of laser powder bed fusion manufactured AlSi10Mg alloy. Online. Materials Science and Engineering: A. 2023, č. 882. https://doi.org/.
DOI: 10.1016/j.msea.2023.145486
Google Scholar
[15]
A. Kempf, K. Hilgenberg, Influence of heat treatments on AlSi10Mg specimens manufactured with different laser powder bed fusion machines. Online. Materials Science and Engineering: A. 2021, č. 818. https://doi.org/.
DOI: 10.1016/j.msea.2021.141371
Google Scholar
[16]
N. Huang, Q. Liu, D.L. Bartles, T.W. Simpson, A.M. Beese, Effect of heat treatment on microstructure and mechanical properties of AlSi10Mg fabricated using laser powder bed fusion. Online. Materials Science and Engineering: A. 2024, č. 895. ISSN 0921-5093. https://doi.org/.
DOI: 10.1016/j.msea.2024.146228
Google Scholar
[17]
E. Ghio, E. Cerri, Additive Manufacturing of AlSi10Mg and Ti6Al4V Lightweight Alloys via Laser Powder Bed Fusion: A Review of Heat Treatments Effects. Online. Materials. 2022, č. 15. https://doi.org/.
DOI: 10.3390/ma15062047
Google Scholar