Structural Analysis of 3D-Printed Tinbcr Alloy Designed for Hydrogen Storage

Article Preview

Abstract:

In this work, a TiNbCr alloy is proposed for solid-state hydrogen storage applications. The design of the alloy is based on the Hume-Rothery rules and the thermodynamic parameters ΔHmix and Ω, while the alloy was conceived as single-phase with a BCC lattice. Samples were synthesized from alloy powder using additive technology and the DED method. The prepared samples were printed with different parameters and their structure and phase composition were subsequently analyzed. The possible influence of these printing parameters on the properties of hydrogen storage alloys is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-46

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Münster, R. Bramstoft, I. Kountouris, L. Langer, D. Keles at al., Perspectives on green hydrogen in Europe—during an energy crisis and towards future climate neutrality. Online. Oxford Open Energy, 3 (2024) 1-10.

DOI: 10.1093/ooenergy/oiae001

Google Scholar

[2] N. Klopčič, I. Grimmer, F. Winkler, M. Sartory, A. Trattner, A review on metal hydride materials for hydrogen storage. Online. Journal of Energy Storage, 72 (2023) 1-17.

DOI: 10.1016/j.est.2023.108456

Google Scholar

[3] P. Hájková, J. Horník, E. Čižmárová, F. Kalianko, Metallic Materials for Hydrogen Storage—A Brief Overview. Online. Coatings, 12 (2022) 1-24.

DOI: 10.3390/coatings12121813

Google Scholar

[4] B. F. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: A review. Online. International Journal of Hydrogen Energy, 32 (2007) 1121-1140.

DOI: 10.1016/j.ijhydene.2006.11.022

Google Scholar

[5] I. Kunce, M. Polanski, J. Bystrzycki, Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS). Online. International Journal of Hydrogen Energy, 38 (2013) 12180-12189.

DOI: 10.1016/j.ijhydene.2013.05.071

Google Scholar

[6] B. S. Omranpour, L. Kommel, E. G. Sanchez, Y. Ivanisenko, J. Huot, Enhancement of Hydrogen Storage in Metals by Using a New Technique in Severe Plastic Deformations. Key Engineering Materials. 799 (2019)173–178.

DOI: 10.4028/www.scientific.net/kem.799.173

Google Scholar

[7] F. Marques, M. Balcerzak, F. Winkelmann, G. Zepon, M. Felderhoff, Review and outlook on high-entropy alloys for hydrogen storage. Online. Energy & Environmental Science, 14 (2021) 5191-5227.

DOI: 10.1039/d1ee01543e

Google Scholar

[8] A. W. Abdel-Ghany, S. Elkatany, M. A. H. Gepreel, Microstructure and Mechanical Properties Investigation of New Al10Cr12Mn28Fe(50-x)Ni(x) High Entropy Alloys. Online. Materials Science Forum. 998 (2020) 9-14.

Google Scholar

[9] L. Kong, B. Chen, D. Wan, Y. Xue, A review on BCC-structured high-entropy alloys for hydrogen storage. Online. Frontiers in Materials. 10 (2023) 1-13.

DOI: 10.3389/fmats.2023.1135864

Google Scholar

[10] S. Guo, Ch. Ng, J. Lu, C. T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Online. Journal of Applied Physics. 109 (2011) 1-13.

DOI: 10.1063/1.3587228

Google Scholar

[11] M. M. Nygård, G. Ek, D. Karlsson, M. Sørby, M. Sahlberg et al., Counting electrons - A new approach to tailor the hydrogen sorption properties of high-entropy alloys. Online. Acta Materialia. 175 (2019) 121-129.

DOI: 10.1016/j.actamat.2019.06.002

Google Scholar

[12] F. Kalianko, Design of an Alloy Suitable for Solid-State Hydrogen Storage and Optimization of Production Parameters. Master's Thesis. Prague: Czech Technical University in Prague, Faculty of Mechanical Engineering, 2024.

Google Scholar

[13] M. Polanski, M. Kwiatkowska, I. Kunce, And J. Bystrzycki, Combinatorial synthesis of alloy libraries with a progressive composition gradient using laser engineered net shaping (LENS): Hydrogen storage alloys, Int. J. Hydrog. Energy, 38 (2013) 12159–12171.

DOI: 10.1016/j.ijhydene.2013.05.024

Google Scholar