[1]
K. Otsuka, X. Ren, Factors affecting the Ms temperature and its control in shape-memory alloys, Mater. Sci. Forum 394–395 (2002) 177–184.
DOI: 10.4028/www.scientific.net/msf.394-395.177
Google Scholar
[2]
K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Prog. Mater. Sci. 50 (2005) 511–678.
DOI: 10.1016/j.pmatsci.2004.10.001
Google Scholar
[3]
K.W.K. Yeung, K.M.C. Cheung, W.W. Lu, C.Y. Chung, Optimization of thermal treatment parameters to alter austenitic phase transition temperature of NiTi alloy for medical implant, Mater. Sci. Eng. A 383 (2004) 213–218.
DOI: 10.1016/j.msea.2004.05.063
Google Scholar
[4]
D. Favier, Y. Liu, L. Orgéas, A. Sandel, L. Debove, P. Comte-Gaz, Influence of thermomechanical processing on the superelastic properties of a Ni-rich Nitinol shape memory alloy, Mater. Sci. Eng. A 429 (2006) 130–136.
DOI: 10.1016/j.msea.2006.05.018
Google Scholar
[5]
X. Liu, Y. Wang, D. Yang, M. Qi, The effect of ageing treatment on shape-setting and superelasticity of a nitinol stent, Mater. Charact. 59 (2008) 402–406.
DOI: 10.1016/j.matchar.2007.02.007
Google Scholar
[6]
M. Drexel, G. Selvaduray, A. Pelton, The effects of cold work and heat treatment on the properties of Nitinol wire, in: Proc. Int. Conf. Shape Mem. Superelastic Technol., Pacific Grove, CA, USA, May 7–11, 2006, p.447–454.
DOI: 10.1115/biomed2007-38012
Google Scholar
[7]
ASTM F2063-12, Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants, ASTM International, 2012.
DOI: 10.1520/f2063-00
Google Scholar
[8]
ASTM F2004-16, Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis, ASTM International, 2016.
Google Scholar
[9]
ASTM F2005-21, Standard Terminology for Nickel-Titanium Shape Memory Alloys, ASTM International, 2021.
Google Scholar
[10]
S. Miyazaki, K. Otsuka, Deformation and transition behavior associated with the R-phase in Ti-Ni alloys, Metall. Trans. A 17 (1986) 53–63.
DOI: 10.1007/bf02644442
Google Scholar
[11]
T.W. Duerig, K. Bhattacharya, The influence of the R-phase on the superelastic behavior of NiTi, Shape Mem. Superelasticity 1 (2015) 153–161.
DOI: 10.1007/s40830-015-0013-4
Google Scholar
[12]
ASTM F2082/F2082M-16, Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery, ASTM International, 2016.
DOI: 10.1520/f2082_f2082m
Google Scholar
[13]
T. Duerig, A. Pelton, K. Bhattacharya, The measurement and interpretation of transformation temperatures in Nitinol, Shape Mem. Superelasticity 3 (2017) 485-498.
DOI: 10.1007/s40830-017-0133-0
Google Scholar
[14]
J. Apell, M. Rettenmayr, A. Undisz, Evaluation methods for non-contact bend and free recovery tests of thin NiTi wires and their effects on measured transformation temperatures, J. Mater. Eng. Perform. 29 (2020) 5435–5441.
DOI: 10.1007/s11665-020-05022-2
Google Scholar
[15]
S.W. Robertson, A. Pequegnat, E. Borgeson, K. Chapman, C. Fahey, E. Veit, Nitinol post-shape-setting time temperature transformation (TTT) and time temperature stress (TTS) properties, Shape Mem. Superelasticity (2025).
DOI: 10.1007/s40830-025-00541-0
Google Scholar