[1]
S. Attarilar, M. Ebrahimi, F. Djavanroodi, Y. Fu, L. Wang, and J. Yang, "3D Printing Technologies in Metallic Implants: A Thematic Review on the Techniques and Procedures," Int. J. Bioprinting, vol. 7, no. 1, 2021.
DOI: 10.18063/ijb.v7i1.306
Google Scholar
[2]
OMS, "Trastornos musculoesqueléticos," Organización Mundial de la Salud. Organización Mundial de la Salud, 2021. [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/musculoskeletal-conditions
DOI: 10.33734/diagnostico.v57i2.86
Google Scholar
[3]
N. Koju, S. Niraula, and B. Fotovvati, "Additively Manufactured Porous Ti6Al4V for Bone Implants: A Review," Metals (Basel)., vol. 12, no. 4, p.687, 2022.
DOI: 10.3390/met12040687
Google Scholar
[4]
I. Yadroitsava, A. du Plessis, and I. Yadroitsev, Bone regeneration on implants of titanium alloys produced by laser powder bed fusion: A review. Elsevier Inc., 2019.
DOI: 10.1016/B978-0-12-815820-3.00016-2
Google Scholar
[5]
A. Busch, A. Wegner, M. Haversath, and M. Jäger, "Bone Substitutes in Orthopaedic Surgery : Current Status and Future Perspectives," Z. Orthop. Unfall., vol. 159, p.304–313, 2020.
DOI: 10.1055/a-1073-8473
Google Scholar
[6]
X. Lin et al., "Biocompatibility of Bespoke 3D-Printed Titanium Alloy Plates for Treating Acetabular Fractures," Biomed Res. Int., vol. 2018, 2018.
DOI: 10.1155/2018/2053486
Google Scholar
[7]
J. Markhoff, J. Wieding, V. Weissmann, J. Pasold, A. Jonitz-Heincke, and R. Bader, "Influence of different three-dimensional open porous titanium scaffold designs on human osteoblasts behavior in static and dynamic cell investigations," Materials (Basel)., vol. 8, no. 8, p.5490–5507, 2015.
DOI: 10.3390/ma8085259
Google Scholar
[8]
H. Chen, Q. Han, C. Wang, Y. Liu, B. Chen, and J. Wang, "Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review," Front. Bioeng. Biotechnol., vol. 8, 2020.
DOI: 10.3389/fbioe.2020.00609
Google Scholar
[9]
M. Araya-Calvo, A. Järvenpää, T. Rautio, J. E. Morales-Sanchez, and T. Guillen-Girón, "Comparative fatigue performance of as-built vs etched Ti64 in TPMS-gyroid and stochastic structures fabricated via PBF-LB for biomedical applications," Rapid Prototyp. J., vol. 30, no. 11, p.217–230, 2024.
DOI: 10.1108/rpj-04-2024-0152
Google Scholar
[10]
Y. C. Wu et al., "Structural design and mechanical response of gradient porous Ti-6Al-4V fabricated by electron beam additive manufacturing," Mater. Des., vol. 158, p.256–265, 2018.
DOI: 10.1016/j.matdes.2018.08.027
Google Scholar
[11]
C. Nan Kuo, Y. P. Wang, and C. K. Chua, "Effect of electropolishing on mechanical property enhancement of Ti6Al4V porous materials fabricated by selective laser melting," Virtual Phys. Prototyp., vol. 17, no. 4, p.919–931, 2022.
DOI: 10.1080/17452759.2022.2090383
Google Scholar
[12]
A. E. Medvedev, H. P. Ng, R. Lapovok, Y. Estrin, T. C. Lowe, and V. N. Anumalasetty, "Effect of bulk microstructure of commercially pure titanium on surface characteristics and fatigue properties after surface modification by sand blasting and acid-etching," J. Mech. Behav. Biomed. Mater., vol. 57, p.55–68, 2016.
DOI: 10.1016/j.jmbbm.2015.11.035
Google Scholar
[13]
M. Araya et al., "In-vivo and ex-vivo evaluation of bio-inspired structures fabricated via PBF-LB for biomedical applications," Mater. Today Bio, vol. 31, p.101450, 2025.
DOI: 10.1016/j.mtbio.2025.101450
Google Scholar
[14]
R. Miralbes, D. Ranz, F. J. Pascual, D. Zouzias, and M. Maza, "Characterization of additively manufactured triply periodic minimal surface structures under compressive loading," Mech. Adv. Mater. Struct., vol. 29, no. 13, p.1841–1855, 2022.
DOI: 10.1080/15376494.2020.1842948
Google Scholar
[15]
Minimal Surfaces, "Schwarz P-Surface," Minimal Surfaces, 2018. https://minimalsurfaces.blog/home/repository/triply-periodic/schwarz-p-surface/
Google Scholar
[16]
F. Claybrook, M. Mohammed, and D. Southee, "Investigation of additive manufactured Split P TPMS elastomeric structures for diabetic foot insoles," Trans. Addit. Manuf. Meets Med., vol. 4, no. 664, p.4, 2022.
Google Scholar
[17]
N. Qiu, Y. Wan, Y. Shen, and J. Fang, "Experimental and numerical studies on mechanical properties of TPMS structures," Int. J. Mech. Sci., vol. 261, no. March 2023, p.108657, 2024.
DOI: 10.1016/j.ijmecsci.2023.108657
Google Scholar
[18]
N. Letov and Y. F. Zhao, "A geometric modelling framework to support the design of heterogeneous lattice structures with non-linearly varying geometry," J. Comput. Des. Eng., vol. 9, no. 5, p.1565–1584, 2022
DOI: 10.1093/jcde/qwac076
Google Scholar