Influence of Rolling Strain Path on Microstructure Evolution and Mechanical Properties of Mg-Zn-Ca Alloy for Orthopedic Applications

Article Preview

Abstract:

This study investigates the influence of symmetric and asymmetric hot rolling on the microstructural evolution and mechanical performance of a homogenized Mg–1.5Zn–0.5Ca (ZC1) alloy. X-ray diffraction confirmed phase stability across all processing conditions, with α-Mg as the primary matrix and Mg6Zn3Ca2 as the secondary phase. Scanning electron microscopy revealed progressive fragmentation and redistribution of intermetallic particles upon rolling, with asymmetric rolling introducing higher shear strain and promoting dynamic recrystallization. Mechanical testing showed that symmetric rolling delivered the most favorable strength–ductility combination (UTS: 230 MPa, Elongation: 37%), while asymmetric rolling exhibited the highest yield strength (121 MPa) and microhardness (59 HV). Despite the intensified strain effects in asymmetric rolling, symmetric rolling provided superior mechanical synergy due to more uniform grain refinement and stable phase distribution. The findings highlight symmetric rolling as a robust and scalable deformation route for enhancing mechanical performance in Mg-Zn-Ca alloy systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-65

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.R. Bakhsheshi-Rad, E. Hamzah, A. Fereidouni-Lotfabadi, M. Daroonparvar, M.A.M. Yajid, M. Mezbahul-Islam, M. Kasiri-Asgarani, M. Medraj, Microstructure and bio-corrosion behavior of Mg-Zn and Mg-Zn-Ca alloys for biomedical applications, Mater. Corros. 65 (2014) 1178–1187.

DOI: 10.1002/maco.201307588

Google Scholar

[2] H.R. Bakhsheshi-Rad, M. Abdellahi, E. Hamzah, A.F. Ismail, M. Bahmanpour, Modelling corrosion rate of biodegradable magnesium-based alloys: The case study of Mg-Zn-RE-xCa (x = 0, 0.5, 1.5, 3 and 6 wt%) alloys, J. Alloys Compd. 687 (2016) 630–642.

DOI: 10.1016/j.jallcom.2016.06.149

Google Scholar

[3] T. Balusamy, T.S.N. Sankara Narayanan, K. Ravichandran, I.S. Park, M.H. Lee, Effect of surface mechanical attrition treatment (SMAT) on pack boronizing of AISI 304 stainless steel, Surf. Coatings Technol. 232 (2013) 60–67.

DOI: 10.1016/j.surfcoat.2013.04.053

Google Scholar

[4] X. Yao, J. Tang, Y. Zhou, A. Atrens, M.S. Dargusch, B. Wiese, T. Ebel, M. Yan, Surface modification of biomedical Mg-Ca and Mg-Zn-Ca alloys using selective laser melting: Corrosion behaviour, microhardness and biocompatibility, J. Magnes. Alloy. 9 (2021) 2155–2168.

DOI: 10.1016/j.jma.2020.08.011

Google Scholar

[5] N. Pulido-González, B. Torres, S. García-Rodríguez, P. Rodrigo, V. Bonache, P. Hidalgo-Manrique, M. Mohedano, J. Rams, Mg–1Zn–1Ca alloy for biomedical applications. Influence of the secondary phases on the mechanical and corrosion behaviour, J. Alloys Compd. 831 (2020) 1–15.

DOI: 10.1016/j.jallcom.2020.154735

Google Scholar

[6] D. Byrska-Wójcik, M. Ostachowska, J. Gibek, K. Wierzbanowski, M. Wróbel, R. Błoniarz, A. Baczmański, M. Kopyściański, I. Kalemba-Rec, Effects of asymmetric rolling with tilted material entry on texture and mechanical properties of aluminium, J. Mater. Process. Technol. 338 (2025).

DOI: 10.1016/j.jmatprotec.2025.118796

Google Scholar

[7] S.A. Abdel-Gawad, M.A. Shoeib, Corrosion studies and microstructure of Mg−Zn−Ca alloys for biomedical applications, Surfaces and Interfaces. 14 (2019) 108–116.

DOI: 10.1016/j.surfin.2018.11.011

Google Scholar

[8] X. Wang, H. Liu, X. Tang, Y. Wang, M. Guo, L.Z. Zhuang, Influence of asymmetric rolling on the microstructure, texture evolution and mechanical properties of Al–Mg–Si alloy, Mater. Sci. Eng. A. 844 (2022) 143154.

DOI: 10.1016/j.msea.2022.143154

Google Scholar

[9] X. Peng, X. Shihao, D. Ding, G. Liao, W. Guohua, W. Liu, W. Ding, Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition, J. Mater. Sci. Technol. 72 (2021) 16–22.

DOI: 10.1016/j.jmst.2020.07.029

Google Scholar

[10] D. Song, A.B. Ma, J.H. Jiang, P.H. Lin, D.H. Yang, J.F. Fan, Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing, Corros. Sci. 53 (2011) 362–373.

DOI: 10.1016/j.corsci.2010.09.044

Google Scholar

[11] W. Wang, H. Wu, R. Zan, Y. Sun, C. Blawert, S. Zhang, J. Ni, M.L. Zheludkevich, X. Zhang, Microstructure controls the corrosion behavior of a lean biodegradable Mg–2Zn alloy, Acta Biomater. 107 (2020) 349–361.

DOI: 10.1016/j.actbio.2020.02.040

Google Scholar

[12] Q. Miao, L. Zhu, W. Wang, Z. Wang, B. Shao, W. Chen, Y. Yu, W. Zhang, Evolution of the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheets during Multi-Pass Lowered-Temperature Rolling, Metals (Basel). 12 (2022). https://doi.org/10.3390/ met12111811.

DOI: 10.3390/met12111811

Google Scholar

[13] J.H. Cho, S.S. Jeong, H.W. Kim, S.B. Kang, Texture and microstructure evolution during the symmetric and asymmetric rolling of AZ31B magnesium alloys, Mater. Sci. Eng. A. 566 (2013) 40–46.

DOI: 10.1016/j.msea.2012.12.066

Google Scholar

[14] S. Ucuncuoglu, A. Ekerim, G.O. Secgin, O. Duygulu, Effect of asymmetric rolling process on the microstructure, mechanical properties and texture of AZ31 magnesium alloys sheets produced by twin roll casting technique, J. Magnes. Alloy. 2 (2014) 92–98.

DOI: 10.1016/j.jma.2014.02.001

Google Scholar

[15] R. MA, Y. LU, L. WANG, Y. nong WANG, Influence of rolling route on microstructure and mechanical properties of AZ31 magnesium alloy during asymmetric reduction rolling, Trans. Nonferrous Met. Soc. China (English Ed. 28 (2018) 902–911

DOI: 10.1016/s1003-6326(18)64724-7

Google Scholar