[1]
Q. Chen and G.A. Thouas, Metallic implant biomaterials, Mater. Sci. Eng. R Rep., 87 (2015) 1-57.
Google Scholar
[2]
G. Muteeb, M. T. Rehman, M. Shahwan, and M. Aatif, Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review, Pharmaceuticals, 16, (2023) p.1615.
DOI: 10.3390/ph16111615
Google Scholar
[3]
F. Rupp, L. Liang, J. Geis-Gerstorfer, L. Scheideler, and F. Hüttig, Surface characteristics of dental implants: A review, Dent Mater, 34 (2018) 40-57.
DOI: 10.1016/j.dental.2017.09.007
Google Scholar
[4]
A. Han, J.K.H. Tsoi, F.P. Rodrigues, J.G. Leprince, and W.M. Palin, Bacterial adhesion mechanisms on dental implant surfaces and the influencing factors, International Journal of Adhesion and Adhesives, 69 (2016) 58-71.
DOI: 10.1016/j.ijadhadh.2016.03.022
Google Scholar
[5]
R. Hauert, K. Thorwarth, and G. Thorwarth, An overview on diamond-like carbon coatings in medical applications, Surface and Coatings Technology, 233 (2013) 119-130.
DOI: 10.1016/j.surfcoat.2013.04.015
Google Scholar
[6]
G. Morand et al., On the adhesion of diamond-like carbon coatings deposited by low-pressure plasma on 316L stainless steel, Surf. Interface Anal., 53 (2021) 658-671.
DOI: 10.1002/sia.6953
Google Scholar
[7]
C. Wei and J.-Y. Yen, Effect of film thickness and interlayer on the adhesion strength of diamond like carbon films on different substrates, Diam. Relat. Mater., 16 (2007) 1325-1330.
DOI: 10.1016/j.diamond.2007.02.003
Google Scholar
[8]
Y. Pauleau, Residual Stresses in DLC Films and Adhesion to Various Substrates, in: C. Donnet and A. Erdemir (Eds.), Tribology of Diamond-Like Carbon Films: Fundamentals and Applications, Boston, MA, 2008, pp.102-136.
DOI: 10.1007/978-0-387-49891-1_4
Google Scholar
[9]
L.Y.S.D. Oliveira, C.J.M. Siqueira, B.L. Fernandes, N. Kuromoto, and D. Retraint, Wear behavior of Diamond-like Carbon Deposited on TiAl6V4 Prepared with Surface Mechanical Attrition Treatment, Mater. Res., 22 (2019) p. e2018056.
DOI: 10.1590/1980-5373-mr-2018-0568
Google Scholar
[10]
K. Zhang, C. Zhang, H. Li, B. Dong, X. Guo, and Y. Liu, Study on the substrate surface micro-texturing/carburizing regulating the film-substrate adhesion and wear behavior of DLC coatings, Diam. Relat. Mater., 130 (2022) p.109535.
DOI: 10.1016/j.diamond.2022.109535
Google Scholar
[11]
C.-C. Chou, Y.-Y. Wu, J.-W. Lee, J.-C. Huang, and C.-H. Yeh, Mechanical properties of fluorinated DLC and Si interlayer on a Ti biomedical alloy, Thin Solid Films, 528 (2013) 136-142.
DOI: 10.1016/j.tsf.2012.06.089
Google Scholar
[12]
G. Capote, V.J. Trava-Airoldi, and L.F. Bonetti, Plasma Treatments for Metallic Surface Modification to Obtain Highly Adherent Diamond-Like Carbon Coatings, IEEE Trans. Plasma Sci., 42 (2014) 1742-1746.
DOI: 10.1109/tps.2014.2320854
Google Scholar
[13]
L. Bonilla-Gameros, P. Chevallier, F. Copes, A. Sarkissian, and D. Mantovani, The oxidation state of Ag nanoparticles highly affects the release of Ag ions without compromising the mechanical performance and the safety of amorphous hydrogenated carbon coatings, Diam. Relat. Mater.,130 (2022) p.109430.
DOI: 10.1016/j.diamond.2022.109430
Google Scholar
[14]
P. Navaneethakrishnan, S. Ganesh Sundara Raman, S. D. Pathak, R. Gnanamoorthy, and N. Ravi, Fretting wear studies on diamond-like carbon coated Ti–6Al–4V, Surface and Coatings Technology, 203 (2009) 1205-1212.
DOI: 10.1016/j.surfcoat.2008.10.017
Google Scholar
[15]
A. Hatem, J. Lin, R. Wei, R. D. Torres, C. Laurindo, and P. Soares, Tribocorrosion behavior of DLC-coated Ti-6Al-4V alloy deposited by PIID and PEMS + PIID techniques for biomedical applications, Surface and Coatings Technology, 332 (2017), 223-232.
DOI: 10.1016/j.surfcoat.2017.07.004
Google Scholar
[16]
H. Wu, T. Zhou, N. Zhang, and X. Zhu, Assessments of the relation between the degree of order of the ultrafast laser deposited carbon film and the features of the Raman spectrum's D band, Surface and Coatings Technology, 311 (2017), 55-62.
DOI: 10.1016/j.surfcoat.2016.12.108
Google Scholar