Structure and Dissolution Behavior of ZnO-Containing Phosphate Invert Glasses Prepared by Liquid Phase Method

Article Preview

Abstract:

Phosphate invert glasses are mainly composed of ortho-and pyro-phosphate units and can stimulate cellular functions by releasing inorganic ions. Our group has succeeded in the synthesis of titanium-containing phosphate invert glasses with the liquid phase method at room temperature. ZnO is classified as an intermediate oxide in the glass network structure and improves the chemical durability of phosphate invert glasses. In addition, zinc ion exhibit a wide range of antibacterial ability. However, excess amounts of zinc ions can be toxic to cells. Hence, the dissolution behavior of zinc ions must be controlled for biomedical applications. In this work, ZnO-containing phosphate invert glasses (PIG-Zn) were prepared using the liquid phase method. The phosphate groups of PIG-Zn were composed of ortho-and pyro-phosphate groups, and the peaks were blue-shifted with increasing the ZnO content due to the field strength of Zn2+ being larger than that of Ca2+. Thus, phosphate groups may be cross-linked by Zn2+ to form P-O-Zn bonds. Meanwhile, ion-releasing amounts from PIG-Zn were decreased with increasing ZnO content. This is because the formation of P-O-Zn bonds can increase the chemical durability of PIG-Zn. In addition, PIG-Zn showed excellent antibacterial ability. Therefore, PIG-Zn is expected to exhibit antibacterial ability with controlled Zn2+ ion-releasing behavior for biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-78

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Kasuga, Y. Abe, Calcium phosphate invert glasses with soda and titania, J. Non-Cryst. Solids, 243 (1999) 70-74.

DOI: 10.1016/s0022-3093(98)00820-5

Google Scholar

[2] S. Lee, H. Maeda, A. Obata, K. Ueda, T. Narushima, T. Kasuga, Structures and dissolution behaviors of CaO–P2O5–TiO2/Nb2O5 (Ca/P≥1) invert glasses, J. Non-Cryst. Solids, 426 (2015) 35-42.

DOI: 10.1016/j.jnoncrysol.2015.06.024

Google Scholar

[3] S. Lee, A. Obata, D.S. Brauer, T. Kasuga, Dissolution behavior and cell compatibility of alkali-free MgO-CaO-SrO-TiO2-P2O5 glasses for biomedical applications, Biomed. Glasses, 1 (2015) 151-158.

DOI: 10.1515/bglass-2015-0015

Google Scholar

[4] S. Lee, H. Maeda, A. Obata, K. Ueda, T. Narushima, T. Kasuga, Structures and dissolution behaviors of MgO-CaO-P2O5-Nb2O5 glasses, J. Non-Cryst. Solids, 438 (2016) 18-25.

DOI: 10.1016/j.jnoncrysol.2016.02.006

Google Scholar

[5] S. Lee, S. Shiraki, F. Nagata, K. Kato, M. Sakurai, T. Kasuga, Structure and dissolution behavior of boron-containing calcium phosphate invert glasses, J. Non-Cryst. Solids, 590 (2022) 121690.

DOI: 10.1016/j.jnoncrysol.2022.121690

Google Scholar

[6] A. Obata, Y. Takahashi, T. Miyajima, K. Ueda, T. Narushima, T. Kasuga, Effects of niobium ions released from calcium phosphate invert glasses containing Nb2O5 on osteoblast-like cell functions, ACS Appl. Mater. Interfaces, 4 (2012) 5684-5690.

DOI: 10.1021/am301614a

Google Scholar

[7] S. Lee, Development of glass-related biomaterials for enhanced bone regeneration via stimulation of cell function, J. Ceram. Soc. Jpn., 128 (2020) 349-356.

DOI: 10.2109/jcersj2.20085

Google Scholar

[8] S. Lee, CHAPTER 5 Calcium Phosphate Invert Glasses, in: A. Obata, D.S. Brauer, T. Kasuga (Eds.) Phosphate and Borate Bioactive Glasses, The Royal Society of Chemistry, 2022, pp.62-77.

DOI: 10.1039/9781839164750-00062

Google Scholar

[9] S. Lee, S. Shiraki, M. Takahashi, A. Obata, M. Sakurai, F. Nagata, Preparation and structure of titanium-containing pyrophosphate glasses prepared using the liquid-phase method, J. Am. Ceram. Soc., 108 (2025) e20144.

DOI: 10.1111/jace.20144

Google Scholar

[10] I. Cacciotti, Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties, J. Mater. Sci., 52 (2017) 8812-8831.

DOI: 10.1007/s10853-017-1010-0

Google Scholar

[11] S. Lee, H. Uehara, A.L.B. Maçon, H. Maeda, A. Obata, K. Ueda, T. Narushima, T. Kasuga, Preparation of antibacterial ZnO-CaO-P2O5-Nb2O5 invert glasses, Mater. Trans., 57 (2016) 2072-2076.

DOI: 10.2320/matertrans.mi201503

Google Scholar

[12] G.J. Harrap, J.S. Best, C.A. Saxton, Human oral retention of zinc from mouthwashes containing zinc salts and its relevance to dental plaque control, Arch. Oral Biol., 29 (1984) 87-91.

DOI: 10.1016/0003-9969(84)90110-9

Google Scholar

[13] S.L. Hall, H.P. Dimai, J.R. Farley, Effects of zinc on human skeletal alkaline phosphatase activity in vitro, Calcif. Tissue Int., 64 (1999) 163-172.

DOI: 10.1007/s002239900597

Google Scholar

[14] X. Wu, N. Itoh, T. Taniguchi, T. Nakanishi, Y. Tatsu, N. Yumoto, K. Tanaka, Zinc-induced sodium-dependent vitamin C transporter 2 expression: potent roles in osteoblast differentiation, Arch. Biochem. Biophys., 420 (2003) 114-120.

DOI: 10.1016/j.abb.2003.09.013

Google Scholar

[15] S.-A. Oh, J.-E. Won, H.-W. Kim, Composite membranes of poly(lactic acid) with zinc-added bioactive glass as a guiding matrix for osteogenic, J. Biomater. Appl., (2011).

DOI: 10.1177/0885328211408944

Google Scholar

[16] N. Amin, C.C.T. Clark, M. Taghizadeh, S. Djafarnejad, Zinc supplements and bone health: The role of the RANKL-RANK axis as a therapeutic target, J. Trace Elem. Med Biol., 57 (2020) 126417.

DOI: 10.1016/j.jtemb.2019.126417

Google Scholar

[17] M. Takahashi, S. Shiraki, S. Lee, A. Obata, Niobium-containing phosphate glasses prepared by the liquid-phase method, Int. J. Mol. Sci., 26 (2025) 161.

DOI: 10.3390/ijms26010161

Google Scholar

[18] H. Kakinuma, K. Ishii, H. Ishihama, M. Honda, Y. Toyama, M. Matsumoto, M. Aizawa, Antibacterial polyetheretherketone implants immobilized with silver ions based on chelate-bonding ability of inositol phosphate: Processing, material characterization, cytotoxicity, and antibacterial properties, J. Biomed. Mater. Res. A, 103 (2015) 57-64.

DOI: 10.1002/jbm.a.35157

Google Scholar

[19] G. Walter, J. Vogel, U. Hoppe, P. Hartmann, The structure of CaO-Na2O-MgO-P2O5 invert glass, J. Non-Cryst. Solids, 296 (2001) 212-223.

DOI: 10.1016/s0022-3093(01)00912-7

Google Scholar

[20] D.S. Brauer, R.M. Wilson, T. Kasuga, Multicomponent phosphate invert glasses with improved processing, J. Non-Cryst. Solids, 358 (2012) 1720-1723.

DOI: 10.1016/j.jnoncrysol.2012.04.027

Google Scholar

[21] U. Patel, R.M. Moss, K.M.Z. Hossain, A.R. Kennedy, E.R. Barney, I. Ahmed, A.C. Hannon, Structural and physico-chemical analysis of calcium/strontium substituted, near-invert phosphate based glasses for biomedical applications, Acta Biomater., 60 (2017) 109-127.

DOI: 10.1016/j.actbio.2017.07.002

Google Scholar

[22] E. Görlich, The effective nuclear charges and a standardized ionicity scale, Z. Phys. Chem., 270O (1989) 961-967.

DOI: 10.1515/zpch-1989-270117

Google Scholar

[23] J.D. Wang, D. Li, J.K. Liu, X.H. Yang, J.L. He, Y. Lu, One-step preparation and characterization of zinc phosphate nanocrystals with modified surface, Soft Nanoscience Letters, 01 (2011) 81-85.

DOI: 10.4236/snl.2011.13015

Google Scholar

[24] R.J. Hrr, J. Jones, The crystal structure of hopeite, Am. Mineral., 61 (1976) 987-995.

Google Scholar

[25] W. Yunqi, Z. Chenkai, P. Andrew, R. Chris, A. Ifty, S. Nusrat, Effects of ZnO addition on thermal properties, degradation and biocompatibility of P45Mg24Ca16Na(15−x)Znx glasses, Biomed. Glasses, 5 (2019) 53-66.

DOI: 10.1515/bglass-2019-0005

Google Scholar

[26] V. Salih, A. Patel, J.C. Knowles, Zinc-containing phosphate-based glasses for tissue engineering, Biomed. Mater., 2 (2007) 11.

DOI: 10.1088/1748-6041/2/1/003

Google Scholar