[1]
T. Kasuga, Y. Abe, Calcium phosphate invert glasses with soda and titania, J. Non-Cryst. Solids, 243 (1999) 70-74.
DOI: 10.1016/s0022-3093(98)00820-5
Google Scholar
[2]
S. Lee, H. Maeda, A. Obata, K. Ueda, T. Narushima, T. Kasuga, Structures and dissolution behaviors of CaO–P2O5–TiO2/Nb2O5 (Ca/P≥1) invert glasses, J. Non-Cryst. Solids, 426 (2015) 35-42.
DOI: 10.1016/j.jnoncrysol.2015.06.024
Google Scholar
[3]
S. Lee, A. Obata, D.S. Brauer, T. Kasuga, Dissolution behavior and cell compatibility of alkali-free MgO-CaO-SrO-TiO2-P2O5 glasses for biomedical applications, Biomed. Glasses, 1 (2015) 151-158.
DOI: 10.1515/bglass-2015-0015
Google Scholar
[4]
S. Lee, H. Maeda, A. Obata, K. Ueda, T. Narushima, T. Kasuga, Structures and dissolution behaviors of MgO-CaO-P2O5-Nb2O5 glasses, J. Non-Cryst. Solids, 438 (2016) 18-25.
DOI: 10.1016/j.jnoncrysol.2016.02.006
Google Scholar
[5]
S. Lee, S. Shiraki, F. Nagata, K. Kato, M. Sakurai, T. Kasuga, Structure and dissolution behavior of boron-containing calcium phosphate invert glasses, J. Non-Cryst. Solids, 590 (2022) 121690.
DOI: 10.1016/j.jnoncrysol.2022.121690
Google Scholar
[6]
A. Obata, Y. Takahashi, T. Miyajima, K. Ueda, T. Narushima, T. Kasuga, Effects of niobium ions released from calcium phosphate invert glasses containing Nb2O5 on osteoblast-like cell functions, ACS Appl. Mater. Interfaces, 4 (2012) 5684-5690.
DOI: 10.1021/am301614a
Google Scholar
[7]
S. Lee, Development of glass-related biomaterials for enhanced bone regeneration via stimulation of cell function, J. Ceram. Soc. Jpn., 128 (2020) 349-356.
DOI: 10.2109/jcersj2.20085
Google Scholar
[8]
S. Lee, CHAPTER 5 Calcium Phosphate Invert Glasses, in: A. Obata, D.S. Brauer, T. Kasuga (Eds.) Phosphate and Borate Bioactive Glasses, The Royal Society of Chemistry, 2022, pp.62-77.
DOI: 10.1039/9781839164750-00062
Google Scholar
[9]
S. Lee, S. Shiraki, M. Takahashi, A. Obata, M. Sakurai, F. Nagata, Preparation and structure of titanium-containing pyrophosphate glasses prepared using the liquid-phase method, J. Am. Ceram. Soc., 108 (2025) e20144.
DOI: 10.1111/jace.20144
Google Scholar
[10]
I. Cacciotti, Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties, J. Mater. Sci., 52 (2017) 8812-8831.
DOI: 10.1007/s10853-017-1010-0
Google Scholar
[11]
S. Lee, H. Uehara, A.L.B. Maçon, H. Maeda, A. Obata, K. Ueda, T. Narushima, T. Kasuga, Preparation of antibacterial ZnO-CaO-P2O5-Nb2O5 invert glasses, Mater. Trans., 57 (2016) 2072-2076.
DOI: 10.2320/matertrans.mi201503
Google Scholar
[12]
G.J. Harrap, J.S. Best, C.A. Saxton, Human oral retention of zinc from mouthwashes containing zinc salts and its relevance to dental plaque control, Arch. Oral Biol., 29 (1984) 87-91.
DOI: 10.1016/0003-9969(84)90110-9
Google Scholar
[13]
S.L. Hall, H.P. Dimai, J.R. Farley, Effects of zinc on human skeletal alkaline phosphatase activity in vitro, Calcif. Tissue Int., 64 (1999) 163-172.
DOI: 10.1007/s002239900597
Google Scholar
[14]
X. Wu, N. Itoh, T. Taniguchi, T. Nakanishi, Y. Tatsu, N. Yumoto, K. Tanaka, Zinc-induced sodium-dependent vitamin C transporter 2 expression: potent roles in osteoblast differentiation, Arch. Biochem. Biophys., 420 (2003) 114-120.
DOI: 10.1016/j.abb.2003.09.013
Google Scholar
[15]
S.-A. Oh, J.-E. Won, H.-W. Kim, Composite membranes of poly(lactic acid) with zinc-added bioactive glass as a guiding matrix for osteogenic, J. Biomater. Appl., (2011).
DOI: 10.1177/0885328211408944
Google Scholar
[16]
N. Amin, C.C.T. Clark, M. Taghizadeh, S. Djafarnejad, Zinc supplements and bone health: The role of the RANKL-RANK axis as a therapeutic target, J. Trace Elem. Med Biol., 57 (2020) 126417.
DOI: 10.1016/j.jtemb.2019.126417
Google Scholar
[17]
M. Takahashi, S. Shiraki, S. Lee, A. Obata, Niobium-containing phosphate glasses prepared by the liquid-phase method, Int. J. Mol. Sci., 26 (2025) 161.
DOI: 10.3390/ijms26010161
Google Scholar
[18]
H. Kakinuma, K. Ishii, H. Ishihama, M. Honda, Y. Toyama, M. Matsumoto, M. Aizawa, Antibacterial polyetheretherketone implants immobilized with silver ions based on chelate-bonding ability of inositol phosphate: Processing, material characterization, cytotoxicity, and antibacterial properties, J. Biomed. Mater. Res. A, 103 (2015) 57-64.
DOI: 10.1002/jbm.a.35157
Google Scholar
[19]
G. Walter, J. Vogel, U. Hoppe, P. Hartmann, The structure of CaO-Na2O-MgO-P2O5 invert glass, J. Non-Cryst. Solids, 296 (2001) 212-223.
DOI: 10.1016/s0022-3093(01)00912-7
Google Scholar
[20]
D.S. Brauer, R.M. Wilson, T. Kasuga, Multicomponent phosphate invert glasses with improved processing, J. Non-Cryst. Solids, 358 (2012) 1720-1723.
DOI: 10.1016/j.jnoncrysol.2012.04.027
Google Scholar
[21]
U. Patel, R.M. Moss, K.M.Z. Hossain, A.R. Kennedy, E.R. Barney, I. Ahmed, A.C. Hannon, Structural and physico-chemical analysis of calcium/strontium substituted, near-invert phosphate based glasses for biomedical applications, Acta Biomater., 60 (2017) 109-127.
DOI: 10.1016/j.actbio.2017.07.002
Google Scholar
[22]
E. Görlich, The effective nuclear charges and a standardized ionicity scale, Z. Phys. Chem., 270O (1989) 961-967.
DOI: 10.1515/zpch-1989-270117
Google Scholar
[23]
J.D. Wang, D. Li, J.K. Liu, X.H. Yang, J.L. He, Y. Lu, One-step preparation and characterization of zinc phosphate nanocrystals with modified surface, Soft Nanoscience Letters, 01 (2011) 81-85.
DOI: 10.4236/snl.2011.13015
Google Scholar
[24]
R.J. Hrr, J. Jones, The crystal structure of hopeite, Am. Mineral., 61 (1976) 987-995.
Google Scholar
[25]
W. Yunqi, Z. Chenkai, P. Andrew, R. Chris, A. Ifty, S. Nusrat, Effects of ZnO addition on thermal properties, degradation and biocompatibility of P45Mg24Ca16Na(15−x)Znx glasses, Biomed. Glasses, 5 (2019) 53-66.
DOI: 10.1515/bglass-2019-0005
Google Scholar
[26]
V. Salih, A. Patel, J.C. Knowles, Zinc-containing phosphate-based glasses for tissue engineering, Biomed. Mater., 2 (2007) 11.
DOI: 10.1088/1748-6041/2/1/003
Google Scholar