[1]
Chakraborty A, Tangestani R, Esmati K, Sabiston T, Yuan L, Martin É. Mitigating inherent micro-cracking in laser additively manufactured RENÉ 108 thin-wall components. Thin-Walled Structures 2023;184:110514.
DOI: 10.1016/j.tws.2022.110514
Google Scholar
[2]
Kohar CP, Martin É, Connolly DS, Patil S, Krutz N, Wei D, et al. A new and efficient thermo-elasto-viscoplastic numerical implementation for implicit finite element simulations of powder metals: An application to hot isostatic pressing. Int J Mech Sci 2019;155:222–34.
DOI: 10.1016/j.ijmecsci.2019.01.046
Google Scholar
[3]
Martin É, Muhammad W, Detor AJ, Spinelli I, Wessman A, Wei D. "Strain-annealed" grain boundary engineering process investigated in Hastelloy-X. Materialia (Oxf) 2020;9:100544.
DOI: 10.1016/j.mtla.2019.100544
Google Scholar
[4]
Takaichi A, Kajima Y, Kittikundecha N, Htat HL, Wai Cho HH, Hanawa T, et al. Effect of heat treatment on the anisotropic microstructural and mechanical properties of Co–Cr–Mo alloys produced by selective laser melting. J Mech Behav Biomed Mater 2020;102:103496.
DOI: 10.1016/j.jmbbm.2019.103496
Google Scholar
[5]
Tangestani R, Chakraborty A, Sabiston T, Yuan L, Ghasri-Khouzani M, Martin É. Multi-scale model to simulate stress directionality in laser powder bed fusion: Application to thin-wall part failure. Mater Des 2023;232:112147.
DOI: 10.1016/j.matdes.2023.112147
Google Scholar
[6]
Batmaz R, Zardoshtian A, Sabiston TD, Tangestani R, Chakraborty A, Krutz N, et al. An Investigation into Sinterability Improvements of 316L Binder Jet Printed Parts. Metall Mater Trans A Phys Metall Mater Sci 2022;53:915–26.
DOI: 10.1007/s11661-021-06564-3
Google Scholar
[7]
Daviran G, Mahmoud SMAS, Kalidindi SR, Poursaee A. Investigation of kinetics of passive layer formation on various microstructures in thermo-mechanically treated steel in simulated concrete pore solution. Materialia (Oxf) 2024;38:102277.
DOI: 10.1016/j.mtla.2024.102277
Google Scholar
[8]
Martin E, Jiang L, Godet S, Jonas JJ. The combined effect of static recrystallization and twinning on texture in magnesium alloys AM30 and AZ31. International Journal of Materials Research 2009;100:576–83.
DOI: 10.3139/146.110060
Google Scholar
[9]
Zeynivandnejad M, Moradi M, Sadeghi A. Mechanical, physical, and degradation properties of 3D printed PLA + Mg composites. J Manuf Process 2023;101:234–44.
DOI: 10.1016/j.jmapro.2023.05.099
Google Scholar
[10]
Im S, Ghasri-Khouzani M, Muhammad W, Batmaz R, Esmati K, Chakraborty A, et al. Evaluation of Different Sintering Agents for Binder Jetting of Aluminum Alloy. J Mater Eng Perform 2023;32:9550–60.
DOI: 10.1007/s11665-023-07829-1
Google Scholar
[11]
Ghasri-Khouzani M, Karimialavijeh H, Pröbstle M, Batmaz R, Muhammad W, Chakraborty A, et al. Processability and characterization of A20X aluminum alloy fabricated by laser powder bed fusion. Mater Today Commun 2023;35:105555.
DOI: 10.1016/j.mtcomm.2023.105555
Google Scholar
[12]
Karimialavijeh H, Ghasri-Khouzani M, Das A, Pröebstle M, Martin. Effect of laser contour scan parameters on fatigue performance of A20X fabricated by laser powder bed fusion. Int J Fatigue 2023;175:107775.
DOI: 10.1016/j.ijfatigue.2023.107775
Google Scholar
[13]
Zhang LC, Liu Y. Additive Manufacturing of Titanium Alloys for Biomedical Applications. Additive Manufacturing of Emerging Materials 2019:179–96.
DOI: 10.1007/978-3-319-91713-9_5
Google Scholar
[14]
Vaicelyte A, Janssen C, Borgne M Le, Grosgogeat B. Cobalt–Chromium Dental Alloys: Metal Exposures, Toxicological Risks, CMR Classification, and EU Regulatory Framework. Crystals 2020, Vol 10, Page 1151 2020;10:1151.
DOI: 10.3390/cryst10121151
Google Scholar
[15]
Delaunay C, Petit I, Learmonth ID, Oger P, Vendittoli PA. Metal-on-metal bearings total hip arthroplasty: The cobalt and chromium ions release concern. Orthopaedics & Traumatology: Surgery & Research 2010;96:894–904.
DOI: 10.1016/j.otsr.2010.05.008
Google Scholar
[16]
Muhammad W, Batmaz R, Natarajan A, Martin E. Effect of binder jetting microstructure variability on low cycle fatigue behavior of 316L. Materials Science and Engineering: A 2022; 839: 142820.
DOI: 10.1016/j.msea.2022.142820
Google Scholar
[17]
Dini F, Ghaffari SA, Jafar J, Hamidreza R, Marjan S. A review of binder jet process parameters; powder, binder, printing and sintering condition. 2021;75:95–100.
DOI: 10.1016/j.mprp.2019.05.001
Google Scholar
[18]
Toh WQ, Tan X, Bhowmik A, Liu E, Tor SB. Tribochemical Characterization and Tribocorrosive Behavior of CoCrMo Alloys: A Review. Materials 2018, Vol 11, Page 30 2017; 11:30.
DOI: 10.3390/ma11010030
Google Scholar
[19]
Moradi M, Karimialavijeh H, Bitar-Nehme E, Martin E. Printability and Green Mechanical Properties of Binder Jet Additive Manufactured Co–Cr–Mo Parts 2025:275–85.
DOI: 10.1007/978-3-031-80748-0_24
Google Scholar
[20]
Esmati K, Chakraborty A, Pendurti S, Natarajan A, Martin É. Anisotropic sintering behavior of stainless steel 316L printed by binder jetting additive manufacturing. Mater Today Commun 2024; 41:110528.
DOI: 10.1016/j.mtcomm.2024.110528
Google Scholar
[21]
Pasco J, Jiang L, Dorin T, Keshavarzkermani A, He Y, Aranas C. Phase transformation in additively manufactured Co-Cr-Mo alloy after solution and aging heat treatment. Mater Charact 2024; 207:113467.
DOI: 10.1016/j.matchar.2023.113467
Google Scholar
[22]
Bettini E, Eriksson T, Boström M, Leygraf C, Pan J. Influence of metal carbides on dissolution behavior of biomedical CoCrMo alloy: SEM, TEM and AFM studies. Electrochim Acta 2011; 56: 9413–9.
DOI: 10.1016/j.electacta.2011.08.028
Google Scholar
[23]
Turrubiates-Estrada R, Salinas-Rodriguez A, Lopez HF. FCC to HCP transformation kinetics in a Co-27Cr-5Mo-0.23C alloy. J Mater Sci 2011;46:254–62.
DOI: 10.1007/s10853-010-4969-3
Google Scholar
[24]
Bettini E, Leygraf C, Lin C, Liu P, Pan J. Influence of Grain Boundaries on Dissolution Behavior of a Biomedical CoCrMo Alloy: In-Situ Electrochemical-Optical, AFM and SEM/TEM Studies. J Electrochem Soc 2012;159:C422–7.
DOI: 10.1149/2.056209jes
Google Scholar
[25]
Bettini E, Leygraf C, Pan J. Nature of Current Increase for a CoCrMo Alloy: "transpassive" Dissolution vs. Water Oxidation. Int J Electrochem Sci 2013;8:11791–804.
DOI: 10.1016/s1452-3981(23)13222-6
Google Scholar