[1]
A.K. Gogia, "High-temperature Titanium Alloys. Materials Science & Metallurgy. 55 (2005) 149–173.
Google Scholar
[2]
M. Geetha, A.K. Singh, , R. Asokamani, A.K. Gogia. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Progress in Materials Science. (54) Iss. 3 (2009) 397–425.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[3]
Th. Tshephe, S.Akinwamide, E. Olevsky and P. Olubambi. Additive manufacturing of titanium-based alloys- A review of methods, properties, challenges, and prospects. Heliyon (l.8) Iss. 3 (2022).
DOI: 10.1016/j.heliyon.2022.e09041
Google Scholar
[4]
B.B. Chechurin, S.S. Ushkov, I.N. Razuevaeva, V.N. and Golfine, Titanium alloys in mechanical engineering, Leningrad, Mashinostroenie, 1977.
Google Scholar
[5]
S. V. Akhonin, E. L. Vrzhizhevskii, V. Yu. Belous and I. K. Petrichenko. Influence of preheating parameters and local heat treatment on structure and properties of dispersion-strengthened joints of silicon-containing titanium alloys made by electron beam welding. The Paton Welding Journal. 7 (2017) 43-47.
DOI: 10.15407/tpwj2017.07.09
Google Scholar
[6]
Ivasishin O.M. Cost-effective manufacturing of titanium parts with powder metallurgy approach. Materials Forum. 29 (2005) 1‒8.
Google Scholar
[7]
S.V. Akhonin, V.Yu. Bilous, R.V. Selin Argon arc and electron beam welding of pseudo-β titanium alloy VT19. Kyiv, Paton Electric Welding Institute of NAS Ukraine, 2021.
DOI: 10.37434/tpwj2021.05.05
Google Scholar
[8]
Lee D.B., Park K.B., Jeong H.W., Kim S.E. Mechanical and oxidation properties of Ti‒xFe‒ySi alloys. Materials Sci. and Eng. A, 328(1‒2) (2002) 161‒168
DOI: 10.1016/s0921-5093(01)01670-7
Google Scholar
[9]
Lin D.J., Ju C.P., Lin J.H.C. Structure and properties of cast Ti‒Fe alloys. Transact. of the American Foundrymen's Soc. 107 (1999) 859‒864.
Google Scholar
[10]
Majima K., Hirata T., Yamamoto M. et al. Microstructures and tensile properties of hot isostatically pressed Ti‒Fe alloys. J. of the Japan Institute of Metals. 52(11) (1988) 1113‒1120.
DOI: 10.2320/jinstmet1952.52.11_1113
Google Scholar
[11]
M. Geetha, A.K. Singh, , R. Asokamani, A.K. Gogia. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Progress in Materials Science. (54) Iss. 3 (2009) 397–425.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[12]
M. Motyka, K. Kubiak, J. Sieniawski and W. Ziaja. 2.02 - Phase Transformations and Characterization of α + β Titanium Alloys. Materials Science and Materials Engineering. 2 (2014) 7-36.
DOI: 10.1016/b978-0-08-096532-1.00202-8
Google Scholar
[13]
V.F. Grabin, Fundamentals of Metal Science and Heat Treatment of Titanium Alloys Welded Joints, Kiev, Naukova Dumka, 1975.
Google Scholar
[14]
M. Ahmed, E. Pereloma. Observation of simultaneous operation of deformation twins in both α and β phases in metastable β titanium alloy. Journal of Alloys and Compounds. 910 (2022) 164794.
DOI: 10.1016/j.jallcom.2022.164794
Google Scholar
[15]
A.A. Ilyin, B.A. Kolachev, I.S. Polkin, Titanium alloys. Composition, structure, properties: Handbook, Moscow, VILS - MATI, 2009.
Google Scholar
[16]
I.I. Kornilov, Titan. Sources, compositions, properties, metal chemistry and applications, Moscow, Nauka, 1975.
Google Scholar
[17]
H. C. Chang, C. S. Lee, S. H. Chen and J. Z. He. Study of Ti/W/Cu, Ti/Co/Cu, and Ti/Mo/Cu multilayer structures as Schottky metals for GaAs diodes. Journal of Electronic Materials. 33, №7 (2004) 15-17.
DOI: 10.1007/s11664-004-0251-2
Google Scholar
[18]
C. Ding, C. Liu, L. Zhang, D. Wu, L. Liu. Design of Low -Cost and High-Strength Titanium Alloys Using Pseudo-Spinodal mechanism through diffusion couple technology and CALPHAD. Materials. 14, №11 (2021) 2910.
DOI: 10.3390/ma14112910
Google Scholar
[19]
L. Markashova, O. Berdnikova, T. Alekseienko, A. Bernatskyi, V. Sydorets. Nanostructures in Welded Joints and Their Interconnection with Operation Properties. Lecture Notes in Mechanical Engineering: Advances in Thin Films, Nanostructured Materials, and Coatings. Singapore: Springer. (2019) 119-128.
DOI: 10.1007/978-981-13-6133-3_12
Google Scholar
[20]
Markashova, L., Tyurin, Y., Berdnikova, O., ... Polovetskyi, I., Titkov, Y. Effect of nano-structured factors on the properties of the coatings producedby detonation spraying method. Lecture Notes in Mechanical Engineering. (2019) 109–117.
DOI: 10.1007/978-981-13-6133-3_11
Google Scholar
[21]
Stukhliak, P., Totosko, O., Stukhlyak, D., Vynokurova, O., & Lytvynenko, I. Use of neural networks for modelling the mechanical characteristics of epoxy composites treated with electric spark water hammer. CEUR Workshop Proceedings. 3896 (2024) 405–418.
Google Scholar
[22]
L.-G. Zhang, J.-L Tang, Z-Y. Wang, J.-Y. Zhou, D. Wu, L.-B. Liu and P. Masset. Pseudo-spinodal mechanism approach to designing a near-β high-strength titanium alloy through high-throughput technique. Rare Metals. 40 (2021) 2099–2108.
DOI: 10.1007/s12598-020-01560-9
Google Scholar
[23]
Dolgov, M. A., Zubrets'ka, N. A., Buketov, A. V., & Stukhlyak, P. D. Use of the method of mathematical experiment planning for evaluating adhesive strength of protective coatings modified by energy fields. Strength of Materials. 44 (1) (2012) 81–86.
DOI: 10.1007/s11223-012-9352-y
Google Scholar
[24]
Hryhorenko, S. Akhonin, O. Berdnikova, S. Hryhorenko, V. Bilous and O. Kushnaryova, "Fine structure of heat-resistant titanium alloys welded joints," Proceedings of the 2019 IEEE 9th International Conference on Nanomaterials: Applications and Properties, NAP. (2019) 01MIT02-1 – 01MIT02-5.
DOI: 10.1109/nap47236.2019.219071
Google Scholar
[25]
O. Berdnikova, O. Kushnarova, A. Bernatskyi, Y. Polovetskyi, V. Kostin, and M. Khokhlov. Structure features of surface layers in structural steel after laser-plasma alloying with 48(WC-W2C)+48Cr+4Al pоwder. IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP), (2021) 01-04.
DOI: 10.1109/nap51885.2021.9568516
Google Scholar
[26]
Titkov, Y., Berdnikova, O., Tyurin, Y., Polovetskiy, Y., Kushnaryova, O. Effect of Structure on the Properties of Composite Cr3C2 + NiCr Coatings. Springer Proceedings in Physics. 240 (2020) 51–159.
DOI: 10.1007/978-981-15-1742-6_14
Google Scholar
[27]
Berdnikova O., Kushnarova O., Bernatskyi A., Alekseenko T., Polovetskyi Y., Khokhlov M. Structure Peculiarities of the Surface Layers of Structural Steel under Laser Alloying. Proceedings of the 2020 IEEE 10th International Conference on "Nanomaterials: Applications and Properties", NAP 2020 (2020) 9309615.
DOI: 10.1109/nap51477.2020.9309615
Google Scholar