Phase Composition, Microhardness, Mechanical and Acoustic Properties of Nonequiatomic Medium-Entropy Alloys FexMn80-xCo10Cr10 (x = 40 and 50) in Different Structural States

Article Preview

Abstract:

At temperatures of 290 K and 77 K, the phase composition and mechanical properties ofnonequiatomic medium-entropy (MEA) alloys Fe40Mn40Co10Cr10 and Fe50Mn30Co10Cr10 werecompared in the coarse-grained (CG) and nanostructured (NS) states, in which additionaldeformation mechanisms are activated under load: phase transformations in the MEAFe50Mn30Co10Cr10 (MEA TRIP) and twinning in the MEA Fe40Mn40Co10Cr10 alloy (MEA TWIP). Itis shown that in the NS state in both alloys, in contrast to the CG state, a complete phase transitionfrom the fcc to the hcp phase is observed, the content of which weakly depends on the temperatureand the number of torsion revolutions during high-pressure torsion (HPT). The transition from theCG to the NS state leads to an increase in the microhardness (in the NS MEA TWIP by 3.7 and inthe NS MEA TRIP by 2.25). In the CG state, a thermally activated character of plastic deformationis observed for both alloys in the temperature range of 290 – 77 K. In the NS state, MEA TWIPremains plastic under active compression deformation at 290 K and 77 K, whereas in NS MEATRIP under similar conditions, macroscopic plasticity is absent. Tensile deformation up to 50 % at30 K in the CG state for both alloys leads to a significant decrease in the absolute values of Young'smodulus over the entire temperature range.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-27

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303.

DOI: 10.1002/adem.200300567

Google Scholar

[2] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A375–377 (2004) 213–218.

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[3] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and Peter K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 2008 10, 534-538.

DOI: 10.1002/adem.200700240

Google Scholar

[4] S. Guo, C.T. Liu. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. 2011 21 433–446.

DOI: 10.1016/S1002-0071(12)60080-X

Google Scholar

[5] Y. Zhang, Y. Zhou, J. Lin, G. Chen, P.K. Liaw. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 2008 10 534–538.

DOI: 10.1002/adem.200700240

Google Scholar

[6] M.H. Tsai and J.W. Yeh, High-entropy alloys: a critical review, Mat. Res. Let. 2014 2, 107-123.

DOI: 10.1080/21663831.2014.912690

Google Scholar

[7] E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys, Nat. Rev. Mater. 4(8) (2019) 515–534.

DOI: 10.1038/s41578-019-0121-4

Google Scholar

[8] D.B. Miracle, O.N. Senkov. A critical review of high entropy alloys and related concepts, Acta Mater. 2017 122 448–511.

DOI: 10.1016/j.actamat.2016.08.081

Google Scholar

[9] H. Shahmir, M.S. Mehranpour, S.A.A. Shams, T.G. Langdon, Twenty years of the CoCrFeNiMn high-entropy alloy: Achieving exceptional mechanical properties through microstructure engineering, J. Mater. Res. Technol. 23 (2023) 3362–3423.

DOI: 10.1016/j.jmrt.2023.01.181

Google Scholar

[10] N.T.C. Nguyen, P. Asghari-Rad, P. Sathiyamoorthi, A. Zargaran, C.S. Lee, H.S. Kim, Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy, Nat. Commun. 11 (2020) 2736.

DOI: 10.1038/s41467-020-16601-1

Google Scholar

[11] W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Mechanical behavior of high-entropy alloys, Prog. Mater. Sci. 118 (2021) 100777.

DOI: 10.1016/j.pmatsci.2021.100777

Google Scholar

[12] R. Chulist, A. Pukenas, P. Chekhonin, A. Hohenwarter, R. Pippan, N. Schell, W. Skrotzki, Phase transformation induced by high pressure torsion in the high-entropy alloy CrMnFeCoNi, Materials 15 (23) (2022) 8407.

DOI: 10.3390/ma15238407

Google Scholar

[13] K. Edalati, et al., Nanomaterials by severe plastic deformation: review of historical developments and recent advances, Materials Research Letters 10 (4) (2022) 163–256.

DOI: 10.1080/21663831.2022.2029779

Google Scholar

[14] D. Wang, A. Bastin, S. Yandt, X. Huang, Microstructure and properties of Co-Cr-Fe-Mn-Ni-based high-entropy alloys with Al addition through heat treatments, Journal of Materials Engineering and Performance (2025) 1–14.

DOI: 10.1007/s11665-025-11300-8

Google Scholar

[15] S.R. Jha, N.P. Gurao, K. Biswas, Micro-mechanisms of shear deformation during high-pressure torsion of equiatomic FeMnNi medium entropy alloy, Journal of Materials Science (2025) 1–27.

DOI: 10.1007/s10853-025-10824-7

Google Scholar

[16] H. Peng, I. Baker, K.P. Weiss, Tensile behavior of the medium-entropy alloy Ni42.4Co24.3Cr24.3Al3Ti3V3 at 4.2 K, Intermetallics 182 (2025) 108777.

DOI: 10.1016/j.intermet.2025.108777

Google Scholar

[17] H.O. Tekin, Ö. Güler, İ. Özkul, G. Al Misned, D.S. Baykal, H. Alkarrani, G. Kilic, A. Mesbahi, Phase stability, structural properties, electronegativity, mechanical properties, and neutron and gamma-ray attenuation properties of Cantor high-entropy alloys for advanced nuclear applications, Journal of Materials Engineering and Performance 34 (15) (2025) 16214–16229.

DOI: 10.1007/s11665-024-10321-z

Google Scholar

[18] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature 534(7606) (2016) 227–230.

DOI: 10.1038/nature17981

Google Scholar

[19] Z. Wang, W. Lu, D. Raabe, Z. Li, On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions, J. Alloys Compd. 781 (2019) 734–743.

DOI: 10.1016/j.jallcom.2018.12.061

Google Scholar

[20] S. Yang, Y. Yang, H. Wang, The characteristic and thermodynamics/kinetics of martensitic transformation in Fe50Mn30Co10Cr10 high-entropy alloy during deformation/heat treatment, Adv. Eng. Mater. 22(3) (2020) 1900868.

DOI: 10.1002/adem.201900868

Google Scholar

[21] T.V. Hryhorova, S.E. Shumilin, Y.O. Shapovalov, Y.O. Semerenko, O.D. Tabachnikova, M.A. Tikhonovsky, A.S. Tortika, M.J. Zehetbauer, E. Schafler, Structure and properties of high-entropy alloys, V.N. Karazin Natl. Univ. Ser. Phys. 32 (2020) 41.

DOI: 10.26565/2222-5617-2020-32-05

Google Scholar

[22] E.D. Tabachnikova, T.V. Hryhorova, S.E. Shumilin, I.V. Kolodiy, Y.O. Shapovalov, Y.O. Semerenko, S.N. Smirnov, I.V. Kashuba, M.A. Tikhonovsky, M.I. Zehetbauer, E. Schafler, Low-temperature deformation behavior of high-entropy alloys, Low Temp. Phys. 48 (2022) 845.

DOI: 10.1063/10.0014029

Google Scholar

[23] E.D. Tabachnikova, T.V. Hryhorova, S.N. Smirnov, I.V. Kolodiy, Y.O. Shapovalov, A.V. Levenets, S.E. Shumilin, I.V. Kashuba, M.A. Tikhonovsky, F. Spieckermann, M.J. Zehetbauer, E. Schafler, Y. Huang, T.G. Langdon, Structure and cryogenic mechanical properties of severely deformed nonequiatomic alloys of Fe–Mn–Co–Cr system, Low Temp. Phys. 49(11) (2023) 1294–1305.

DOI: 10.1063/10.0021377

Google Scholar

[24] Y.A. Semerenko, Interfacing the instrumental GPIB with a personal computer through the LPT port, Instrum. Exp. Tech. 48 (2005) 608–610.

DOI: 10.1007/s10786-005-0107-x

Google Scholar

[25] V.D. Natsik, Y.A. Semerenko, Dislocation mechanisms of low-temperature acoustic relaxation in iron, Low Temp. Phys. 45(5) (2019) 551–567.

DOI: 10.1063/1.5097366

Google Scholar

[26] Y.A. Semerenko, V.D. Natsik, Low temperature peak of internal friction in high-entropy Al0.5CoCrCuFeNi alloy, Low Temp. Phys. 46(1) (2020) 78–86.

DOI: 10.1063/10.0000367

Google Scholar

[27] E.D. Tabachnikova, T.V. Hryhorova, S.N. Smirnov, I.V. Kolodiy, Y.O. Shapovalov, A.V. Levenets, S.E. Shumilin, I.V. Kashuba, M.A. Tikhonovsky, F. Spieckermann, M.J. Zehetbauer, E. Schafler, Y. Huang, T.G. Langdon, Structure and cryogenic mechanical properties of severely deformed nonequiatomic alloys of Fe–Mn–Co–Cr system, Low Temp. Phys. 49(11) (2023) 1294–1305.

DOI: 10.1063/10.0021377

Google Scholar

[28] D. Li, Z. Li, L. Xie, Y. Zhang, W. Wang, Cryogenic mechanical behavior of a TRIP-assisted dual-phase high-entropy alloy, Nano Res. (2022) 1–8.

DOI: 10.1007/s12274-021-3719-y

Google Scholar

[29] Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior, Acta Mater. 131 (2017) 323–335.

DOI: 10.1016/j.actamat.2017.03.069

Google Scholar

[30] V.D. Natsik, On strain delay time at the superconducting transition, Phys. Status Solidi A14 (1972) 271–275.

DOI: 10.1002/pssa.2210140133

Google Scholar

[31] V.L. Indenbom, Yu.Z. Estrin, Breakaway of dislocation from point defect treated as a stochastic problem, Phys. Status Solidi A 4 (1971) K37–K39.

DOI: 10.1002/pssa.2210040139

Google Scholar