[1]
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303.
DOI: 10.1002/adem.200300567
Google Scholar
[2]
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A375–377 (2004) 213–218.
DOI: 10.1016/j.msea.2003.10.257
Google Scholar
[3]
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and Peter K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 2008 10, 534-538.
DOI: 10.1002/adem.200700240
Google Scholar
[4]
S. Guo, C.T. Liu. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. 2011 21 433–446.
DOI: 10.1016/S1002-0071(12)60080-X
Google Scholar
[5]
Y. Zhang, Y. Zhou, J. Lin, G. Chen, P.K. Liaw. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 2008 10 534–538.
DOI: 10.1002/adem.200700240
Google Scholar
[6]
M.H. Tsai and J.W. Yeh, High-entropy alloys: a critical review, Mat. Res. Let. 2014 2, 107-123.
DOI: 10.1080/21663831.2014.912690
Google Scholar
[7]
E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys, Nat. Rev. Mater. 4(8) (2019) 515–534.
DOI: 10.1038/s41578-019-0121-4
Google Scholar
[8]
D.B. Miracle, O.N. Senkov. A critical review of high entropy alloys and related concepts, Acta Mater. 2017 122 448–511.
DOI: 10.1016/j.actamat.2016.08.081
Google Scholar
[9]
H. Shahmir, M.S. Mehranpour, S.A.A. Shams, T.G. Langdon, Twenty years of the CoCrFeNiMn high-entropy alloy: Achieving exceptional mechanical properties through microstructure engineering, J. Mater. Res. Technol. 23 (2023) 3362–3423.
DOI: 10.1016/j.jmrt.2023.01.181
Google Scholar
[10]
N.T.C. Nguyen, P. Asghari-Rad, P. Sathiyamoorthi, A. Zargaran, C.S. Lee, H.S. Kim, Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy, Nat. Commun. 11 (2020) 2736.
DOI: 10.1038/s41467-020-16601-1
Google Scholar
[11]
W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Mechanical behavior of high-entropy alloys, Prog. Mater. Sci. 118 (2021) 100777.
DOI: 10.1016/j.pmatsci.2021.100777
Google Scholar
[12]
R. Chulist, A. Pukenas, P. Chekhonin, A. Hohenwarter, R. Pippan, N. Schell, W. Skrotzki, Phase transformation induced by high pressure torsion in the high-entropy alloy CrMnFeCoNi, Materials 15 (23) (2022) 8407.
DOI: 10.3390/ma15238407
Google Scholar
[13]
K. Edalati, et al., Nanomaterials by severe plastic deformation: review of historical developments and recent advances, Materials Research Letters 10 (4) (2022) 163–256.
DOI: 10.1080/21663831.2022.2029779
Google Scholar
[14]
D. Wang, A. Bastin, S. Yandt, X. Huang, Microstructure and properties of Co-Cr-Fe-Mn-Ni-based high-entropy alloys with Al addition through heat treatments, Journal of Materials Engineering and Performance (2025) 1–14.
DOI: 10.1007/s11665-025-11300-8
Google Scholar
[15]
S.R. Jha, N.P. Gurao, K. Biswas, Micro-mechanisms of shear deformation during high-pressure torsion of equiatomic FeMnNi medium entropy alloy, Journal of Materials Science (2025) 1–27.
DOI: 10.1007/s10853-025-10824-7
Google Scholar
[16]
H. Peng, I. Baker, K.P. Weiss, Tensile behavior of the medium-entropy alloy Ni42.4Co24.3Cr24.3Al3Ti3V3 at 4.2 K, Intermetallics 182 (2025) 108777.
DOI: 10.1016/j.intermet.2025.108777
Google Scholar
[17]
H.O. Tekin, Ö. Güler, İ. Özkul, G. Al Misned, D.S. Baykal, H. Alkarrani, G. Kilic, A. Mesbahi, Phase stability, structural properties, electronegativity, mechanical properties, and neutron and gamma-ray attenuation properties of Cantor high-entropy alloys for advanced nuclear applications, Journal of Materials Engineering and Performance 34 (15) (2025) 16214–16229.
DOI: 10.1007/s11665-024-10321-z
Google Scholar
[18]
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature 534(7606) (2016) 227–230.
DOI: 10.1038/nature17981
Google Scholar
[19]
Z. Wang, W. Lu, D. Raabe, Z. Li, On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions, J. Alloys Compd. 781 (2019) 734–743.
DOI: 10.1016/j.jallcom.2018.12.061
Google Scholar
[20]
S. Yang, Y. Yang, H. Wang, The characteristic and thermodynamics/kinetics of martensitic transformation in Fe50Mn30Co10Cr10 high-entropy alloy during deformation/heat treatment, Adv. Eng. Mater. 22(3) (2020) 1900868.
DOI: 10.1002/adem.201900868
Google Scholar
[21]
T.V. Hryhorova, S.E. Shumilin, Y.O. Shapovalov, Y.O. Semerenko, O.D. Tabachnikova, M.A. Tikhonovsky, A.S. Tortika, M.J. Zehetbauer, E. Schafler, Structure and properties of high-entropy alloys, V.N. Karazin Natl. Univ. Ser. Phys. 32 (2020) 41.
DOI: 10.26565/2222-5617-2020-32-05
Google Scholar
[22]
E.D. Tabachnikova, T.V. Hryhorova, S.E. Shumilin, I.V. Kolodiy, Y.O. Shapovalov, Y.O. Semerenko, S.N. Smirnov, I.V. Kashuba, M.A. Tikhonovsky, M.I. Zehetbauer, E. Schafler, Low-temperature deformation behavior of high-entropy alloys, Low Temp. Phys. 48 (2022) 845.
DOI: 10.1063/10.0014029
Google Scholar
[23]
E.D. Tabachnikova, T.V. Hryhorova, S.N. Smirnov, I.V. Kolodiy, Y.O. Shapovalov, A.V. Levenets, S.E. Shumilin, I.V. Kashuba, M.A. Tikhonovsky, F. Spieckermann, M.J. Zehetbauer, E. Schafler, Y. Huang, T.G. Langdon, Structure and cryogenic mechanical properties of severely deformed nonequiatomic alloys of Fe–Mn–Co–Cr system, Low Temp. Phys. 49(11) (2023) 1294–1305.
DOI: 10.1063/10.0021377
Google Scholar
[24]
Y.A. Semerenko, Interfacing the instrumental GPIB with a personal computer through the LPT port, Instrum. Exp. Tech. 48 (2005) 608–610.
DOI: 10.1007/s10786-005-0107-x
Google Scholar
[25]
V.D. Natsik, Y.A. Semerenko, Dislocation mechanisms of low-temperature acoustic relaxation in iron, Low Temp. Phys. 45(5) (2019) 551–567.
DOI: 10.1063/1.5097366
Google Scholar
[26]
Y.A. Semerenko, V.D. Natsik, Low temperature peak of internal friction in high-entropy Al0.5CoCrCuFeNi alloy, Low Temp. Phys. 46(1) (2020) 78–86.
DOI: 10.1063/10.0000367
Google Scholar
[27]
E.D. Tabachnikova, T.V. Hryhorova, S.N. Smirnov, I.V. Kolodiy, Y.O. Shapovalov, A.V. Levenets, S.E. Shumilin, I.V. Kashuba, M.A. Tikhonovsky, F. Spieckermann, M.J. Zehetbauer, E. Schafler, Y. Huang, T.G. Langdon, Structure and cryogenic mechanical properties of severely deformed nonequiatomic alloys of Fe–Mn–Co–Cr system, Low Temp. Phys. 49(11) (2023) 1294–1305.
DOI: 10.1063/10.0021377
Google Scholar
[28]
D. Li, Z. Li, L. Xie, Y. Zhang, W. Wang, Cryogenic mechanical behavior of a TRIP-assisted dual-phase high-entropy alloy, Nano Res. (2022) 1–8.
DOI: 10.1007/s12274-021-3719-y
Google Scholar
[29]
Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior, Acta Mater. 131 (2017) 323–335.
DOI: 10.1016/j.actamat.2017.03.069
Google Scholar
[30]
V.D. Natsik, On strain delay time at the superconducting transition, Phys. Status Solidi A14 (1972) 271–275.
DOI: 10.1002/pssa.2210140133
Google Scholar
[31]
V.L. Indenbom, Yu.Z. Estrin, Breakaway of dislocation from point defect treated as a stochastic problem, Phys. Status Solidi A 4 (1971) K37–K39.
DOI: 10.1002/pssa.2210040139
Google Scholar