[1]
C. Varvenne, A. Lugue, W.A. Curtin, Theory of strengthening in fcc high entropy alloys, Acta Mater. 118 (2016) 164-176.
DOI: 10.1016/j.actamat.2016.07.040
Google Scholar
[2]
B. Yin, F. Maresca, W.A. Curtin, Vanadium is an optimal element for strengthening in both fcc and bcc high-entropy alloys, Acta Mater. 188 (2020) 486-491.
DOI: 10.1016/j.actamat.2020.01.062
Google Scholar
[3]
N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, O.N. Senkov, Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys, J. Alloys Comp. 628 (2015) 170-185.
DOI: 10.1016/j.jallcom.2014.12.157
Google Scholar
[4]
G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, O.N. Senkov, Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system, J. Alloys Comp. 591 (2014) 11-21.
DOI: 10.1016/j.jallcom.2013.12.210
Google Scholar
[5]
N. Ali, L. Zhang, D. Liu, H.W. Zhou, K. Sanaullah, C. Zhang, J. Chu, Y. Nian, J. Cheng, Strengthening mechanisms in high entropy alloys: A review, Mater. Today Commun. 33 (2022), 104686.
DOI: 10.1016/j.mtcomm.2022.104686
Google Scholar
[6]
W. Jiang, Y.T. Zhu, Y.H. Zhao, Mechanical properties and deformation mechanisms of heterostructured high-entropy and medium-entropy alloys: A review, Front. Mater. 8 (2021), 792359.
DOI: 10.3389/fmats.2021.792359
Google Scholar
[7]
H. Park, S. Son, S. Y. Ahn, H. Ha, R.E. Kim, J.H. Lee, H.M. Joo, J.G. Kim and H.S. Kim, Hyperadaptor; temperature-insensitive tensile properties of Ni-based high-entropy alloy across a wide temperature range, Mater. Res. Lett. 13 (2025) 348-356.
DOI: 10.1080/21663831.2025.2457346
Google Scholar
[8]
P. Wu, K. Gan, D. Yan, Z. Li, The temperature dependence of deformation behaviors in high-entropy alloys: A review, Metals 11 (2021) 2005.
DOI: 10.3390/met11122005
Google Scholar
[9]
D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solid. 46 (1998) 411-425.
DOI: 10.1016/s0022-5096(97)00086-0
Google Scholar
[10]
S. Suresh, Graded materials for resistance to contact deformation and damage, Science 292 (2001) 2447-2451.
DOI: 10.1126/science.1059716
Google Scholar
[11]
Y.P. Cao, J. Lu, A new scheme for computational modeling of conical indentation in plastically graded materials, J. Mater. Res. 19 (2004) 1703-1716.
DOI: 10.1557/jmr.2004.0239
Google Scholar
[12]
H.V. Rusakova, L.S. Fomenko, S.N. Smirnov, A.V. Podolskiy, Y.O. Shapovalov, E.D. Tabachnikova, M.A. Tikhonovsky, A.V. Levenets, M.J. Zehetbauer, E. Schafler, Low temperature micromechanical properties of nanocrystalline CoCrFeNiMn high entropy alloy, Mater. Sci. Eng. A 828 (2021) 142116.
DOI: 10.1016/j.msea.2021.142116
Google Scholar
[13]
E.D. Tabachnikova, А.V. Podolskiy, M.O. Laktionova, N.A. Bereznaia, M.A. Tikhonovsky, A.S. Tortika, Mechanical properties of the CoCrFeNiMnVx high entropy alloys in temperature range 4.2-300 K, J. Alloys Comp. 698 (2017) 501-509.
DOI: 10.1016/j.jallcom.2016.12.154
Google Scholar