Transient Behavior of Imperfectly Bonded Dissimilar Piezoelectric Layers Containing Multiple Embedded Cracks under Anti-Plane Electro-Mechanical Impact

Article Preview

Abstract:

This paper presents an analytical model for analyzing two bonded dissimilar piezoelectric materials weakened by multiple embedded cracks. The medium is subjected to anti-plane mechanical and in-plane electrical loading. We consider the interface imperfect to address potential electro-mechanical damage at the interface, with the electro-mechanical imperfection represented by a linear spring model. First, the solution for a dynamic electro-elastic dislocation in the piezoelectric layer is obtained using the integral transforms technique. Subsequently, the dislocation solutions are utilized to transform the problems into a set of singular integral equations featuring Cauchy kernels, which are then solved numerically in the Laplace transform domain. The numerical Laplace inversion technique calculates the dynamic stress intensity factors (DSIFs). Several examples are analyzed to derive DSIFs for varying crack lengths and the spring constants reflecting imperfect electro-mechanical bonding and the material properties of the piezoelectric layers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-68

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Tichy, J. Erhart, E. Kittinger, J. Privratska, Fundamentals of Piezoelectric Sensorics, Springer, International Publishing, Verlag Berlin Heidelberg (2010).

Google Scholar

[2] W.Q. Chen, K.Y. Lee, Exact solution of angle-ply piezoelectric laminates in cylindrical bending with interfacial imperfections, Composite Structures, 5 (2004) 329–337.

DOI: 10.1016/j.compstruct.2003.11.008

Google Scholar

[3] W.Q. Chen, K.Y. Lee, Benchmark solution of angle-ply piezoelectric-laminated cylindrical panels in cylindrical bending with weak interfaces, Archive Applied Mechanics, 74 (2005) 466–476.

DOI: 10.1007/s00419-004-0357-2

Google Scholar

[4] H.S. Paul, V.K. Nelson, Axisymmetric vibration of piezocomposite hollow circular cylinder, Acta Mechanica, 116 (1996) 213–222.

DOI: 10.1007/bf01171431

Google Scholar

[5] H. Fan, K.Y. Sze, A micro-mechanics model for imperfect interface in dielectric materials, Mechanics of Materials, 33 (2001) 363–370.

DOI: 10.1016/s0167-6636(01)00053-9

Google Scholar

[6] H.M. Shodja, S.M. Tabatabaei, M.T. Kamali, A piezoelectric-inhomogeneity system with imperfect interface, International Journal of Engineering Sciences, 44 (2006) 291–311.

DOI: 10.1016/j.ijengsci.2005.12.009

Google Scholar

[7] S. H. Ding, X. Li, Periodic cracks in a functionally graded piezoelectric layer bonded to a piezoelectric half-plane, Theoretical Applied Fracture Mechanics, 49 (2008) 313–320.

DOI: 10.1016/j.tafmec.2008.02.002

Google Scholar

[8] X. Li, S. H. Ding, Periodically distributed parallel cracks in a functionally graded piezoelectric (FGP) strip bonded to a FGP substrate under static electromechanical load, Computational Material Sciences, 50 (2009) 1477–1484.

DOI: 10.1016/j.commatsci.2010.12.002

Google Scholar

[9] Yong-Dong Li a , Kang Yong Lee, Interaction between an electrically permeable crack and the imperfect interface in a functionally graded piezoelectric sensor, International Journal of Engineering Science, 47 (2009) 363–371.

DOI: 10.1016/j.ijengsci.2008.11.003

Google Scholar

[10] Y. D. Li, K. Y. Lee, Crack tip and anti-shielding effects of the imperfect interface in a layered piezoelectric sensor, International Journal of Solid Structures, 46 (2009) 1736-1742.

DOI: 10.1016/j.ijsolstr.2008.12.023

Google Scholar

[11] Y. D. Li, K. Y. Lee, Anti-plane fracture analysis for the weak-discontinuous interface in a non-homogeneous piezoelectric bi-material structure, European Journal of Mechanics A/Solids, 28 (2009) 241-247.

DOI: 10.1016/j.euromechsol.2008.05.003

Google Scholar

[12] J. W. Shin, Y. S. Lee, Anti-plane moving crack in a functionally graded piezoelectric layer between two dissimilar piezoelectric strips, Journal of Mechanical Science and Technology, 26 (2012) 1017-1025.

DOI: 10.1007/s12206-012-0233-x

Google Scholar

[13] M. Nourazar and M. Ayatollahi, Multiple moving interfacial cracks between two dissimilar piezoelectric layers under electromechanical loading, Smart Materials and Structures, 25 (2016) 075011.

DOI: 10.1088/0964-1726/25/7/075011

Google Scholar

[14] A. H. Fartash, M. Ayatollahi, Multiple interfacial cracks in dissimilar piezoelectric layers under time harmonic loadings, Fatigue and Fracture of Engineering Materials and Structures, (2018) 1–14.

DOI: 10.1111/ffe.12923

Google Scholar

[15] A. H. Fartash, M. Ayatollahi, R. Bagheri, Transient response of dissimilar piezoelectric layers with multiple interacting interface cracks, Applied Mathematical Modelling, 66 (2019) 508–526.

DOI: 10.1016/j.apm.2018.09.030

Google Scholar

[16] D. Chen, N.A. Noda , Rei Takaki, Y. Sano, Intensity of singular stress fields (ISSFs) in micro-bond test in comparison with ISSFs in pull-out test, International Journal of Mechanical Sciences 183 (2020) 105817.

DOI: 10.1016/j.ijmecsci.2020.105817

Google Scholar

[17] M. Ayatollahi, A. G. Milan, P. Mirzania, Transient analysis of a piezoelectric-orthotropic laminate weakened by multiple embedded and interface cracks under impact loads, (2020)

DOI: 10.1016/j.engfailanal.2020.105016

Google Scholar

[18] S. M. Mousavi, J. Paavola, Analysis of cracked functionally graded piezoelectric strip, International Journal of Solids and Structures, 50 (2013) 2449–2456.

DOI: 10.1016/j.ijsolstr.2013.03.038

Google Scholar

[19] A. M. Cohen, Numerical Methods for Laplace Transform Inversion, Springer, (2007) New York, London.

Google Scholar

[20] Y. E. Pak a, E. Goloubeva, Electroelastic properties of cracked piezoelectric materials under longitudinal shear, Mechanics of Materials 24 (1996) 287-303.

DOI: 10.1016/s0167-6636(96)00038-5

Google Scholar

[21] X. Wang, Z. Zhong, F. L. Wu, A moving conducting crack at the interface of two dissimilar piezoelectric materials, International Journal of Solids and Structures, 40 (2003) 2381–2399.

DOI: 10.1016/s0020-7683(03)00060-x

Google Scholar