Effect of Constraint on the Initiation of Ductile Fracture in Shear Loading

Abstract:

Article Preview

Research studies for mode I cracks have shown that fracture toughness or the critical value of J for fracture initiation, Jcrit is not merely a material property but depends also on the geometry and loading configurations. The geometry dependency of fracture toughness can be attributed to the effect of the crack tip constraint. In this paper, the constraint effect is studies for the initiation stage in mode II ductile crack growth. Two major mechanisms of ductile fracture: 'void growth and coalescence' and 'shear band localization and de-cohesion' are considered. A boundary layer model is simulated using the finite element method and the effect of far-filed T-stress on the relevant stress parameters near the crack tip is studied. It is shown that the initiation of the ductile crack growth in mode II is influenced significantly by T for the mechanism of void growth and coalescence and is insensitive to T for the mechanism of shear localisation and de-cohesion.

Info:

Periodical:

Key Engineering Materials (Volumes 261-263)

Edited by:

Kikuo Kishimoto, Masanori Kikuchi, Tetsuo Shoji and Masumi Saka

Pages:

183-188

Citation:

M. R. Ayatollahi et al., "Effect of Constraint on the Initiation of Ductile Fracture in Shear Loading", Key Engineering Materials, Vols. 261-263, pp. 183-188, 2004

Online since:

April 2004

Export:

Price:

$38.00

[1] C. Betegon, and J.W. Hancock, J. Applied Mech. 58 (1991) p.104.

[2] N.P. O’Dowd, and F.C. Shih, J. Mech. Phys. Solids, 39 (1991) p.989.

[3] N.P. O’Dowd, and F.C. Shih, J. Mech. Phys. Solids, 40 (1992) p.939.

[4] B.S. Henry, and A.R. Luxmoore, Engg. Frac. Mech., 57 (1997) p.375.

[5] S.X. Wu, and Y.W. Mai, Fracture Mechanics: 26th Volume, ASTM STP 1256. (1995) p.43.

[6] J.W. Hancock, W.G. Reuter, and D.M. Parks, Constraint Effects in Fracture, ASTM STP 1171. (1993) p.21.

[7] Z.Z. Du, C. Betegon, and J.W. Hancock, International J. Frac., 52 (1991) p.191.

[8] M.R. Ayatollahi, M.J. Pavier, and D.J. Smith, International J. Frac. 82 (1996) p. R61.

[9] M.R. Ayatollahi, M.J. Pavier, and D.J. Smith, International J. Frac. 91 (1998) p.283.

[10] D.J. Smith, M.R. Ayatollahi, and M.J. Pavier, Fatigue Frac. Engg. Mater. Struc., 24 (2001) p.137.

[11] M.R. Ayatollahi, D.J. Smith, and M.J. Pavier, International J. Frac., 113 (2002) p.153.

[12] J.R. Rice, and D.M. Tracey, J. Mech. Phys. Solids, 17 (1969) p.201.

[13] G. Rousselier, J.C. Devaux, G. Mottet and G. Devesa,. Non-linear Fracture Mechanics: Volume IIElastic Plastic Fracture, ASTM STP 995, (1989) p.332.

DOI: https://doi.org/10.1520/stp27716s

[14] J.Q. Clayton, and J.F. Knott, Metal Science, 10 (1976) p.63.

[15] J.R. Rice and D.M. Tracey, Computational fracture mechanics. Numerical and Computer Methods in Structural Mechanics. Academic Press, New York, NY, (1973) p.585.

DOI: https://doi.org/10.1016/b978-0-12-253250-4.50031-2

[16] K. Tohgo, and H. Ishii, Engg. Frac. Mech., 41 (1992) p.529.

[17] N. Hallback, and F. Nilsson, J. Mech. Phys. Solids, 42 (1994) p.1345.

[18] S.V. Kamat, and J.P. Hirth, Acta Mater., 44 (1996) p.201.

[19] T.D. Swankie, The role of shear and constraint in mixed mode brittle and ductile fracture. PhD Dissertation, University of Bristol, Bristol, UK (1999).

Fetching data from Crossref.
This may take some time to load.