Finite Element Analyses for Thickness Effects on J-Integral Testing using Non-Standard Testing Specimens

Abstract:

Article Preview

This paper compiles solutions of plastic η factors for standard and non-standard fracture toughness testing specimens, via detailed three-dimensional (3-D) finite element (FE) analyses. Fracture toughness testing specimens include a middle cracked tension (M(T)) specimen, SE(B), single-edge cracked bar in tension (SE(T)) and C(T) specimen. The ligament-to-thickness ratio of the specimen is systematically varied. It is found that the use of the CMOD overall provides more robust experimental estimation than that of the LLD, for all cases considered in the present work. Moreover, the estimation based on the load- CMOD record is shown to be insensitive to the specimen thickness, and thus can be used for testing a specimen with any thickness.

Info:

Periodical:

Key Engineering Materials (Volumes 261-263)

Edited by:

Kikuo Kishimoto, Masanori Kikuchi, Tetsuo Shoji and Masumi Saka

Pages:

693-698

DOI:

10.4028/www.scientific.net/KEM.261-263.693

Citation:

J.S. Kim et al., "Finite Element Analyses for Thickness Effects on J-Integral Testing using Non-Standard Testing Specimens", Key Engineering Materials, Vols. 261-263, pp. 693-698, 2004

Online since:

April 2004

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.