3D Numerical Analysis for the Inelastic Deformation of Rubber Particle Modified Polymers

Article Preview

Abstract:

Body-centered cubic unit cell models and three-dimensional finite element method are used to study the inelastic deformation of rubber particle modified polymers. Calculations are carried out for three loading conditions, i.e. uniaxial loading, plane strain deformation loading and the so-called 'equivalent shear' loading. Distributions of the localized shear deformation are presented to understand the microscopic deformation mechanisms of the polymers. Effects of particle size, particle volume fraction and loading conditions on the micro- and macroscopic deformation behavior of rubber particle modified polymers are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 261-263)

Pages:

717-722

Citation:

Online since:

April 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.F. Yee and R.A. Pearson, J. Mater. Sci., 21(1986) p.2462.

Google Scholar

[2] T.J. Wang, K. Kishimoto and M. Notomi, Acta Mech. Sinica, 18(2002) p.479.

Google Scholar

[3] T.J. Wang, K. Kishimoto and M. Notomi, Key Eng. Mater., 183-187(2000) p.121.

Google Scholar

[4] J. Lee and A.F. Yee, Polymer, 42(2001) p.589.

Google Scholar

[5] M. Danielsson, D.M. Parks and M.C. Boyce, J. Mech. Phys. Solids, 50(2002) p.351.

Google Scholar

[6] S. Socrate and M.C. Boyce, J. Mech. Phys. Solids, 48(2000) p.233.

Google Scholar

[7] X.H. Chen and Y. -W. Mai, J. Mater. Sci., 33(1998) p.3529.

Google Scholar

[8] Y. Huang and A.J. Kinloch, J. Mater. Sci., 27(1992) p.2753.

Google Scholar

[9] J.G. Williams, Stress Analysis of Polymers, Longman Group Limited, London (1973).

Google Scholar

[10] M. Notomi, K. Kishimoto, T.J. Wang and T. Shibuya, Key Eng. Mater., 183-187(2000) p.779.

Google Scholar

[11] K. Kishimoto, Key Eng. Mater., 183-187(2000).

Google Scholar