[1]
W.F. Chen: Stability Design of Steel Frames (World Books Press, Shanghai 1999).
Google Scholar
[2]
C.N. Chen: The two-dimensional frames model of the differential quadrature element method. Computers & Structures Vol. 62 (1997), pp.555-571.
DOI: 10.1016/s0045-7949(96)00230-1
Google Scholar
[3]
C.N. Chen: The warping torsion bar model of the differential quadrature element method. Computers & Structures Vol. 66 (1998), pp.249-257.
DOI: 10.1016/s0045-7949(97)00066-7
Google Scholar
[4]
C.N. Chen: The Timoshenko beam model of the differential quadrature element method. Computational Mechanics Vol. 24 (1999), pp.65-69.
DOI: 10.1007/s004660050438
Google Scholar
[5]
X. Wang, C.W. Bert and A.G. Striz: Differential quadrature analysis of deflection, buckling, and free vibration of beams and rectangular plates. Computers & Structures Vol. 48 (1993), pp.473-479.
DOI: 10.1016/0045-7949(93)90324-7
Google Scholar
[6]
H. Du, M.K. Lim and R.M. Lin: Application of generalized differential quadrature method to structural problems. Int. J. numer. methods eng. Vol. 37(1994), pp.1881-1896.
DOI: 10.1002/nme.1620371107
Google Scholar
[7]
C. W. Bert and M. Malik: The differential quadrature method in computational mechanics: A review. Appl. Mech. Rev. Vol. 49 (1996), pp.1-28.
Google Scholar
[8]
T.X. Yu and L.C. Zhang: The theory of plastic bending and application (Science Press, Beijing 1992).
Google Scholar