Production and Amyloid Fibril Formation of Recombinant Yeast Prion(Sup35)-Like Protein Fragment

Article Preview

Abstract:

Amyloid fibrils have long been established as the well-known a-helix to b-sheet transition that characterizes the conversion of the cellular form of prion proteins into a scrapie form. A very short sequence of the Yeast prion-like protein GNNQQNY(SupN) is responsible for the aggregation that induces diseases. As such, in the current study, a GST-fused monomer SupN vector is used to express the SupN peptide in Escherichia coli(E. Coli). In addition, a method for the production, purification, and cleavage of the recombinant SupN in E. coli is also described, which yields as much as 2mg per liter of growth of natural abundance fusion proteins in LB media. To gain a better understanding of the aggregation-structure relationship of the 7 residues of the Yeast prion-like protein, the change in the conformational structure is studied by Transmission Electron Microscopy and will be further studied by 13C solid-state NMR. Accordingly, this is the first investigation of the fibril formation of a heptamer peptide expressed in E.coli.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 277-279)

Pages:

67-71

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.W. Kelly: Curr. Opi. Struct. Biol., Vol. 8 (1998), p.101.

Google Scholar

[2] P.T. Lansbury: Curr. PNAS USA, Vol. 96 (1999), p.3342. Title of Publication (to be inserted by the publisher).

Google Scholar

[3] M.F. Perutz: Trends Biochem. Sci., Vol. 24 (1999), p.58.

Google Scholar

[4] C.M. Dobson: Trends Biochem. Sci., Vol. 24 (1999), p.329.

Google Scholar

[5] R.B. Wickner: Science, Vol. 264 (1994), p.566.

Google Scholar

[6] H. E. Sparrer, A. Santoso, F.C. Szoka, J.S. Weissman: Science, Vol. 289(2000), p.595.

Google Scholar

[7] I. Stansfield, M.F. Tuite: Curr. Genet., Vol. 25(1994), p.385.

Google Scholar

[8] S.V. Paushkin, V, V, Kushnirov, V.N. Smirnov, M.D. Ter-Avanesyan: Science, Vol. 277 (1997), p.381.

Google Scholar

[9] A.H. DePace, A. Santoso, P. Hillner, J.S. Weissman, Cell, Vol. 93 (1998), p.1241.

Google Scholar

[10] Y.K. Chae, K.S. Cho, W.C. Chun: Protein Peptide Lett., Vol. 9 (2002), p.315.

Google Scholar

[11] O.N. Antzutkin, J.J. Balbach, R.D. Leapman, N.W. Rizzo, J. Reed, R. Tycko: PNAS, Vol. 97 (2000), p.13045.

Google Scholar

[12] Balbach, J.J.; Ishii, Y., Antzutkin, O.N., Leapman, R.D., Rizzo, N.W.; Dyda, R., Reed, J., Tycko, R., Biochemistry., 2000, 39, 13748.

DOI: 10.1021/bi0011330

Google Scholar

[13] D.D. Laws, H.L. Bitter, K. Liu, H.L. Ball, K. Kaneko, H. Wille, F.E. Cohen, S.B. Prusiner, A. Pines, D.E. Wemmer: PNAS, Vol. 98 (2001), p.11686.

Google Scholar

[14] J.H. Hwang, J.J. Park, T.J. Park, Y. Kim: ENC(Experimental Nuclear Magnetic Resonance Conference), (2003), P. 324.

Google Scholar

[15] J.J. Park, J.H. Hwang, T.J. Park, Y. Kim: KSBMB Annual Meeting, (2003), D-37.

Google Scholar

[16] Y. Kim, J.J. Park, J.H. Hwang, T.J. Park: PNAS, 2003, in preparation.

Google Scholar

[17] M.F. Perutz, B.J. Pope, D. Owen, E.E. Wanker, E. Scherzinger: PNAS,. Vol. 99 (2002), p.5596.

Google Scholar

[18] C.Y. King, P. Tittmann, H. Gross, R. Gebert, M. Aebi, K. Wuthrich: PNAS, Vol. 941 (1997), p.6618.

Google Scholar

[19] M. Reches, Y. Porat, E. Gazit: J. Biol. Chem., Vol. 277 (2002), p.354.

Google Scholar