Preparation and Properties of Crosslinked Polyurethane Containing Hydrophilic PEO Component for Biomaterials

Article Preview

Abstract:

A series of multiblock polyurethanes containing various poly(ethylene oxide) (PEO) contents (0-80 wt%) were prepared from hexamethylene diisocyanate (HDI)/ PEO / poly(tetramethylene oxide) (PTMO)/ polybutadiene diol (PBD)/ 1,4-butanediol (BD) and used as modifying additives (30 wt%) to improve the properties of biomedical grade PelletheneÒ. A hydrophilic PEO component was introduced by the addition of PEO-containing polyurethanes and dicumyl peroxide (DCP) as the crosslinking agents in a PelletheneÒ matrix. As the PEO content (PEO block length) increased, the hydrogen-bonding fraction of the crosslinked polyurethane also increased, indicating an increase in the phase separation with an increase in the PEO content in the crosslinked polyurethane. Using electron spectroscopy for a chemical analysis, the ratio of ether carbon to alkyl carbon in the crosslinked polyurethane film increased remarkably with an increase, in the PEO content. Meanwhile, the water contact angle of the crosslinked polyurethane film surfaces decreased with increasing PEO content. The water absorption and mechanical properties of the crosslinked polyurethane films increased with increasing and the platelet adhesion on the crosslinked polyurethane film surfaces decreased significantly. Accordingly, these results suggest that the crosslinked polyurethane containing a hydrophilic PEO component may be more effective for a biomaterial application that is in direct contact with blood.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 277-279)

Pages:

82-89

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Korematsu, A.; Takemoti, Y.; Nakaya, T.; Inoue, H. Biomaterials 2002, 23, 263.

Google Scholar

[2] Cooper, S. L. J Biomater Sci Polym End 1999, 10(6), 679-697.

Google Scholar

[3] Li, Y. J.; Nakaya,T.; Zhang, Z.; Kodama, M. J Biomater Appi 1997, 12(2), 167.

Google Scholar

[4] Lee, J. H.; Ju,Y. M.; Kim, D. M. Biomaterials 2000, 21, 683.

Google Scholar

[5] Han, D. K.; Park, K. D.; Kim, Y. H. J Biomater Sci Polym End 1998, 9(2), 163.

Google Scholar

[6] Ikada, Y. Biomaterials 1994, 15, 725.

Google Scholar

[7] Uyama, Y.; Kato, K.; Ikada, Y. Adv Polym Sci 1998, 137, 3.

Google Scholar

[8] Marconi, W.; Galloppa, A.; Mattinell,A. ; Piozzi, A. Biomaterials 1995, 16, 449.

Google Scholar

[9] Logeart-Aviamoglou; Jozefonvicz, D. J. J Biomed Mater Res Appl Biomater 1999 48(4), 578. Title of Publication (to be inserted by the publisher).

Google Scholar

[10] Bailey, F. E.; Koleske, J. Y. Poly(ethylene oxide) ; Academic Press : New York, 1976; p.209.

Google Scholar

[11] Kjellander, R.; Florin, E. J Chem Soc Faraday Trans I 1981, 77, (2053).

Google Scholar

[12] Merrill, E. W.; Salzman, E. W. Am Soc Artif Intern Org J 1983, 6, 60.

Google Scholar

[13] Andrade, J. D.; Nagaoka, S. S.; Okano, T.; Kim, S. W. Am Soc Artif Intern Org J 1987, 10, 75.

Google Scholar

[14] Brinkaman, E.; van der Does, L.; Bantjes, A. Biomaterials 1990, 11, 200.

Google Scholar

[15] Horbett, T. A.; Ratner, B. D.; Schway, M. B; Haque, Y. J Colloid Interface Sci 1993, 27, 1559.

Google Scholar

[16] Jansen, B.; Ellinghorst, G. J. Biomed Mater Res 1985, 19, 1085.

Google Scholar

[17] Fujimoto, K.; Inoue, H.; Ikada, Y. J Biomed Mater Res 1993, 27, 1559.

Google Scholar

[18] Jeong, B. J.; Lee, H. J Colloid Interface Sci, 1996, 178, 757.

Google Scholar

[19] Lee, J. H.; Jeong, B. J.; Lee, H. J Biomed Mater Res 1997, 34, 105.

Google Scholar

[20] Lee, J. H.; Kopecek, J.; Andrade, J. D. J Biomed Mater Res 1989, 23, 351.

Google Scholar

[21] Lee, J. H.; Kopeckova, P.; Andrade, J. D. Biomaterials 1990, 11, 455.

Google Scholar

[22] Amiji, M.; Park, K. Biomaterials 1992, 13, 682.

Google Scholar