Effect of SrO/BaO Ratio on the Phase Structure of the BSTN Composite Ceramics

Article Preview

Abstract:

The effect of SrO/BaO ratio on the phase structure of the (1-x)BaO.xSrO.0.7TiO2.0.3Nb2O5 composite ceramics was investigated by XRD and SEM. The results showed that the SrO/BaO ratio increased in the perovskite phase and kept almost constant in the tungsten bronze phase as the content of SrO increased in the composite system. The constant SrO/BaO ratio in the tungsten bronze phase was about 0.667. The crystal lattices of the perovskite phase in the composite system were larger and smaller respectively than that in pure (1-x)BaO.xSrO.TiO2 system when SrO/BaO ratio were respectively <0.667 and >0.667. The crystal lattices of the perovskite phases in both systems showed the same crystal lattices when SrO/BaO = 0.667. Affected by the SrO/BaO ratio required in the tungsten bronze phase in composite system, the contents and average grain size of the perovskite phase decreased, while the content of tungsten bronze phase increased as the SrO/BaO ratio increased.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Pages:

111-114

Citation:

Online since:

February 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.K. Tae, H.K. Chang and H.O. Myung: J. Appl. Phys. Vol. 7 (1994), p.4316.

Google Scholar

[2] F.X. Zhang and K. Sun: Piezoelectricity part 2(Publishing company of national industry, Beijing China 1984).

Google Scholar

[3] A.M. Glass: Appl. Phys. Lett. Vol. 13 (1968), p.147.

Google Scholar

[4] G.W. Dietz, M. Schumacher and R. Waser: J. Appl. Phys. Vol. 82 (1997), p.2359.

Google Scholar

[5] J.G. Cheng, J. Tang and J. H Chu: Appl. Phys. Lett. Vol. 77 (2000), p.1035.

Google Scholar

[6] R.W. Whatmore and R. Watton: Ferroelectrics Vol. 236 (2000), p.259.

Google Scholar

[7] J.S. Lee, J.S. Park, J.S. Kim and Y. Hyun: Jpn. J. Appl. Phys. Vol. 5B (1999), pp. L574.

Google Scholar

[8] C. Duran, M.T. Susan and L. G. Messing: J. Am. Ceram. Soc. Vol. 83 (2000), p.2203.

Google Scholar

[9] S. B Liu, M. Liu and S. Jiang: Mater. Sci. Eng. B Vol. 99 (2003), p.511.

Google Scholar

[10] T. Granzow, Th. Woike and W. Rammensee: Phys. Status Solidi (a) Vol. 197 (2003), pp. R2.

Google Scholar

[11] B. Jaffe, W.R. Cook and H. Jaffe: Piezoelectric Ceramics (Academic Press, London 1971).

Google Scholar

[12] C. Jong and J. Gan: Jpn. J. Appl. Phys. Vol. 39 (2000), p.545.

Google Scholar

[13] N.S. VanDamme, A.E. Sutherland, L. Jones, K. Bridger and S. R. Winzer: J. Am. Ceram. Soc. Vol. 74 (1991), p.1785.

Google Scholar

[14] T. S. Fang, N. T. Wu and F. -S. Shiau: J. Mater. Sci. Lett. Vol. 13 (1994), p.1746.

Google Scholar

[15] W.J. Lee and T.T. Fang: J. Am. Ceram. Soc. Vol. 81 (1998), p.193.

Google Scholar

[16] M. P. Trubelja, E. Ryba and D. K. Smith: J. Mater. Sci. Vol. 31 (1996), p.1435.

Google Scholar

[17] J. Koo, J. Jang and B. Bae: J. Am. Ceram. Soc. Vol. 84 (2001), p.193.

Google Scholar

[18] W.J. Lee and T. T. Fang: J. Am. Ceram. Soc. Vol. 81 (1998), p.1019.

Google Scholar

[19] Z. Zhou, P. Du, G. Han, W. Weng and G. Shen: J. Inorg. Mater. (accepted).

Google Scholar

[20] H. Amorin, J. Portelles, F. Guerrero, A. Fundora and J.M. Siqueiros: J. Electroceram. Vol. 3 (1999), p.371.

Google Scholar

[21] S. Garcia, R. Font, J. Portelles, R.J. Quinones, J. Heiras and J.M. Siqueirod: J. Electroceram. Vol. 6 (2001), p.101.

Google Scholar

[22] P.B. Jamiesion, S.C. Abrahams and J.L. Bernstein: J. Chem. Phys. Vol. 48 (1968), p.5048.

Google Scholar