Reliability Evaluation of Interfacial Shear Strength on Single Carbon-Fiber/Rubber-Modified Epoxy Resin System

Article Preview

Abstract:

Rubber-modified epoxy resins are used as a matrix material for glass and carbon-fiber composites. Mechanical properties of fiber reinforced composites depend on the interfacial shear strength between the reinforced fiber and the matrix resin. This study is focused on the interfacial shear strength in the reinforced carbon fiber and rubber-modified epoxy resin system. To evaluate interfacial shear strength between the fiber and the resin, pull-out test is performed using a microdroplet method. Based on experimental results, numerical analysis was also simulated. It is concluded that the interfacial shear strength of carbon fiber/unmodified epoxy resin system was higher than that of carbon fiber/modified epoxy resin system. The reason for decreased the interfacial shear strength of rubber-modified system is that contractive forces in neat epoxy resin acting on carbon fiber were less than those in rubber-modified epoxy resin system.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 297-300)

Pages:

1784-1789

Citation:

Online since:

November 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.F. Yee and R.A. Pearson: J. Mater. Sci. Vol. 21 (1986), p.2462.

Google Scholar

[2] H.R. Daghyani, Y.W. Mai and J. wu: J. Mater. Sci. Lett. Vol. 13 (1994), p.1330.

Google Scholar

[3] A.J. Kinloch, S.J. Shaw D.A. Tod and D.L. Hunston: Ploym. Vol. 24 (1983), p.1341.

Google Scholar

[4] W.D. Bascom: J. Mater. Sci. Vol. 16 (1981), p.2657.

Google Scholar

[5] D.B. Lee, T. Ikeda, M. Todo, N. Miyazaki and K. Takahashi: Trans. Japan Soc. Mech. Eng. Vol. 65 (1998), p.25.

Google Scholar

[6] R. Bagheri and R.A. Pearson: Ploym. Vol. 37 (1996), p.4529.

Google Scholar

[7] A. Kelly and W.R. Tyson: J. Mech. Phys. Solids Vol. 13 (1969), p.329.

Google Scholar

[8] A. Takaku and R.G.C. Arridge: J. Phys. D, Appl. Phys. Vol. 6 (1973), p. (2038).

Google Scholar

[9] J. K. wells and P.W.R. Beaumout: J. Mater. Sci. Vol. 20 (1985), p.1275.

Google Scholar

[10] L. Dilandro, et al.: J. Mater. Sci. Vol. 22 (1987), p. (1980).

Google Scholar

[11] A. Takaku and R.G.G. Arridge: J. Phus. D, Appl. Phys. Vol. 6 (1973), p. (2038).

Google Scholar

[12] J. Bowling and G.W. Groves: J. Mater. Sci. Vol. 14 (1979), p.431.

Google Scholar

[13] B. Miller, P. Muri and Rebenfeld: Comp. Sci. Teck. Vol. 28 (1987), p.17.

Google Scholar

[14] U. Gaur and B. miller: Comp. Sci. Tech. Vol. 34 (1989), p.35.

Google Scholar

[15] C.K. Moon: J. Appl. Polym. Sci. Vol. 54 (1994), p.73.

Google Scholar

[16] C.K. Moon and W.G. McDonough: J. Appl. Polym. Sci. Vol. 67 (1998), p.1701.

Google Scholar

[17] L.T. Drzal: SAMPE J. Sept. /Oct. Vol. 7 (1983), p.40.

Google Scholar

[18] W.D. Bascom and R.M. Jensen: J. Adhesion Vol. 19 (1986), p.219.

Google Scholar

[19] W.A. Cutin: J. Mater. Sci. Vol. 26 (1991), p.5239.

Google Scholar

[20] M.C. Waterbury and L.T. Drzal: J. Comp. Tech. Res. Vol. 13 (1991), p.22.

Google Scholar

[21] C. Baxevanakis et al: Comp. Sci. Tech. Vol. 48 (1993), p.47.

Google Scholar

[22] J.P. Favre and M.C. Merienne: Int. J. Adhesion and Adhesives Vol. 1 (1981), p.311.

Google Scholar

[23] A.S. Holik, R.P. Kambour, S.Y. Hobbs and D.G. Fink: Microstruct Sci. Vol. 7(1979), p.357.

Google Scholar