Avalanche Behaviour in Microfracturing Process of 3-D Brittle Disordered Material

Article Preview

Abstract:

Using a newly-developed Material Failure Process Analysis code (MFPA3D), the micro-fracturing process and the avalanche behavior characterization of brittle disordered materials such as rock or concrete is numerically studied under uniaxial compression and tension. It is found that, due to the heterogeneity of the disordered material, there is an avalanche behavior in the microcrack coalescence process. Meanwhile, a hierarchy of avalanche events also numerically observed though a study of numerically obtained acoustic emissions or seismic events. Numerical simulations indicate that macro-crack nucleation starts well before the peak stress is reached and the crack propagation and coalescence can be traced, which can be taken as a precursory to predict the macro-fracture of the brittle disordered materials. In addition, the numerically obtained results also reveal the presence of residual strength in the post-peak region and the resemblance in the stress-strain curves between uniaxial compression and tension.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 297-300)

Pages:

2567-2572

Citation:

Online since:

November 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Petri, G. Paparo, A. Vespignani, et al: Phys. Rev. Lett. Vol. 73 (1994), p.3423.

Google Scholar

[2] C. Maes, A. Van Moffaert, H. Frederix and H. Strauven: Phys Rev. B. Vol. 57 (1998), p.4987.

DOI: 10.1103/physrevb.57.4987

Google Scholar

[3] P. Diodati, F. Marchesoni and S. Piazza: Phys. Rev. Lett. Vol. 67 (1991), p.2239.

Google Scholar

[4] D.R. Curran, L. Seaman and D.A. Shockey: Phys. Rep. Vol. 147 (1987).

Google Scholar

[5] S.C. Blair and N.G.W. Cook: Int. J. Rock Mech. Min. Sci. Vol. 35 (1998), p.837.

Google Scholar

[6] J.G.M. Van Mier: Fracture process of concrete (CRC Press, New York 1997), p.253.

Google Scholar

[7] P.A. Cundall: Int. J. Rock Mech. Min. Sci. Vol. 25 (1998), p.107.

Google Scholar

[8] R. Hart, P.A. Cundall and J. Lemos: Int. J. Rock Mech. Min. Sci. Vol. 25 (1988), p.117.

Google Scholar

[9] A.R. Mohamed and W. Hansen: ACI Materials J. Vol. 96 (1999), p.196.

Google Scholar

[10] C.A. Tang: Int. J. Rock Mech. Min. Sci. Vol. 34 (1997), p.249.

Google Scholar

[11] C.A. Tang, P.K. Kaiser: Int. J. Rock Mech. & Min. Sci. Vol. 35 (1998), p.113.

Google Scholar

[12] C.A. Tang, S.Q. Kou: Eng. Fract. Mech. Vol. 61 (1998), p.311.

Google Scholar

[13] B.H.G. Brady and E.T. Brown: Rock Mechanics (Chapman & Hall, London 1993).

Google Scholar

[14] D.A. Lockner, J.D. Byerlee, V. Kuksenko, et al: Nature Vol. 350 (1991), p.39.

Google Scholar

[15] A. Zang, C.F. Wagner and G. Dresen: J. Geophys. Res. Vol. 101 (1996), p.17507.

Google Scholar

[16] X.Y. Wu, P. Baud and T.F. Wong: Int. J. Rock Mech. Min. Sci. Vol. 37 (2000), p.143.

Google Scholar