[1]
S.T. Tu: Environmental effect on fracture and damage, Eds. G.C. Sih, S.T. Tu and Z.D. Wang (Zhejiang university Press, Hangzhou 2004).
Google Scholar
[2]
R5. Assessment procedure for the high temperature response of structures (British Energy Generation Ltd., 2003).
Google Scholar
[3]
D. Moulin, B. Drubay and L. Laiarinandrasana: A synthesis of the fracture assessment methods proposed in the French RCC-MR code for high temperature, WRC Bulletin 440 (1999), p.1.
Google Scholar
[4]
BS 7910, Guide to methods of assessing the acceptability of flaws in fusion welded structures, London: BSI (1999).
Google Scholar
[5]
F.Z. Xuan, S.T. Tu and Z.D. Wang, et al.: J of Chinese Mechanical Engineering Vol. 15 (in Chinese) (2004), p.928.
Google Scholar
[6]
R. Wu, F. Seitisleam and R. Sandstrom: Creep crack growth in low alloy reactor pressure vessel steel at 360°C-420°C, SKI Report 99: 6 (1999).
Google Scholar
[7]
R.A. Ainsworth, D.G. Hooton and G. Green: Engineering Fracture Mechanics Vol. 62 (1999), p.95.
Google Scholar
[8]
R.A. Ainsworth: Fatigue Fracture Engng Mater Struct. Vol. 16 (1993), p.1091.
Google Scholar
[9]
C.M. Davies, N.P. O'Dowd and D.W. Dean, et al.: Int. J of Pres. Ves. & Piping Vol. 80 (2003), p.541.
Google Scholar
[10]
R6. Assessment of the integrity of structures containing defects, Procedure R6-Revision 4, Gloucester, UK: Nuclear Electric Ltd. (2000).
Google Scholar
[11]
F.Z. Xuan, S.T. Tu and Z.D. Wang: Safety assessment method for defective structures in creep regime, Eds. G.C. Sih, S.T. Tu and Z.D. Wang (East China University of Science and Technology Press, Shanghai 2003).
Google Scholar
[12]
A.J. Fookes and D.J. Smith: Int. J of Pres. Ves. & Piping Vol. 78 (2001), p.951.
Google Scholar
[13]
B. Dogan and B. Petrovski: Int. J of Pres. Ves. & Piping Vol. 78 (2001), p.795.
Google Scholar
[14]
P. Andersson, P. Segle and L.A. Samuelson: Fatigue Fracture Engng Mater Struct Vol. 23 (2000), p.533.
Google Scholar
[15]
P. Segle, P. Andersson and L. A Samuelson: Fatigue Fracture Engng Mater Struct Vol. 23 (2000), p.521.
Google Scholar
[16]
S.T. Tu: Theoretical and Applied Fracture Mechanics Vol. 38 (2002), p.203.
Google Scholar
[17]
S.T. Tu and K.B. Yoon: Engineering Fracture Mechanics Vol. 64 (1999), p.765.
Google Scholar
[18]
P.J. Budden and I. Curbishley: Nuclear Engineering and Design Vol. 197 (2000), p.13.
Google Scholar
[19]
A. Assire, B. Michel and M. Raous: Nuclear Engineering and Design Vol. 206 (2001), p.45.
Google Scholar
[20]
F.Z. Xuan, S.T. Tu and Z.D. Wang: Int. J Fracture Vol. 126 (2004), p.267.
Google Scholar
[21]
F.Z. Xuan, S.T. Tu and Z.D. Wang: Fatigue Fracture Engng Mater Struct (submitted).
Google Scholar