Tensile and Fracture Behavior of NbSS/Nb5Si3 In Situ Composites Prepared by Arc Melting

Article Preview

Abstract:

Nb-base in-situ composites, which have the base composition of Nb-18Si-5Mo-5Hf, have been investigated in microstructure, hardness (Hv*), Young’s modulus (E), tensile properties and fracture behavior. The microstructures of all composites examined consist of NbSS matrix and Nb5Si3 secondary phases. No secondary phase such as Nb2C appeared. The crystal structure of Nb5Si3 is Mn5Si3-type when C replaces 2mol%-Nb, though typical structures of a (Cr5B3-type) and b (W5Si3-type) as in the base composition when W replaces. W addition is effective in increasing Hv* and E of both phases as expected. However, C alloying is somewhat beneficial only in Nb5Si3 with a noticeable negative effect in NbSS. Furthermore, the composite exhibits the highest strength at 1473 K, while the base composite exhibits the highest at room temperature. The fracture behavior is independent of the compositions and it is controlled by cleavage fractures of Nb5Si3, decohesion of NbSS/Nb5Si3 interface and ductile rupture of NbSS depending on the testing temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 297-300)

Pages:

507-514

Citation:

Online since:

November 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.R. Subramanian, M.G. Mendiratta and D.M. Dimiduk: J. Met. Vol. 48 (1996), p.33.

Google Scholar

[2] M.R. Jackson, B.P. Bewlay, R.G. Rowe, D.W. Skelly and H.A. Lipsitt: J. Met. Vol. 48 (1996), p.39.

Google Scholar

[3] M.G. Mendiratta and D.M. Dimiduk: Metall. Trans. Vol. 24 (1993), p.501.

Google Scholar

[4] D.L. Daividson: Metall. Mater. Trans. A Vol. 28 (1997), p.1297.

Google Scholar

[5] L. Zhang and J. Wu: Scripta Mater. Vol. 38 (1998), p.307.

Google Scholar

[6] P.R. Subramanian, T.A. Parthasarathy, M.G. Mendiratta and D.M. Dimiduk: Scripta Metall. Mater. Vol. 32 (1995), p.1227.

Google Scholar

[7] R.M. Nekkanti and D.M. Dimiduk: MRS Symposium Proceedings Vol. 194 (1990), p.175.

Google Scholar

[8] J. Sha, H. Hirai, T. Tabaru, A. Kitahara, H. Ueno and S. Hanada: Metall. Mater. Trans. A Vol. 34 (2003), p.85.

Google Scholar

[9] B.P. Bewlay, J.J. Lewandowski and M.R. Jackson: J. Met. Vol. 49 (1997), p.67.

Google Scholar

[10] P. Villars, A. Prince and H. Okamoto : ASM International Vol. 6 (USA 1995).

Google Scholar

[11] J. Sha, H. Hirai, T. Tabaru, A. Kitahara, H. Ueno and S. Hanada: Mater. Sci. Eng. A Vol. 343 (2003), p.282.

Google Scholar

[12] W.Y. Kim, H. Tanaka, A. Kasama, A. Kasama and S. Hanada: Jr. Alloys Comp. Vol. 333 (2002), p.170.

Google Scholar

[13] J.H. Kim, T. Tabaru, H. Hirai, M. Sakamoto and S. Hanada.: Mater. Sci. Eng. A Vol. 372 (2004), p.137.

Google Scholar

[14] J.H. Kim, T. Tabaru and H. Hirai: Mater. Trans. Vol. 44 (2003), p.673.

Google Scholar

[15] J.H. Kim, T. Tabaru, H. Hirai, A. Kitahara and S. Hanada: Scripta Mater. Vol. 48 (2003), p.1439.

Google Scholar

[16] E. Parthé, H. Nowotny and H. Shumid: MONATSHEFTE FUER CHEMIE Vol. 86 (1955), p.385.

Google Scholar

[17] W.Y. Kim, H. Tanaka, A. Kasama, R. Tanaka and S. Hanada: Intermetallics Vol. 9 (2001), p.521.

Google Scholar