Effects of Re Alloying on Mechanical Properties of In-Situ Composites with Base Composition of Nb-18Si-2HfC

Article Preview

Abstract:

Nb-base in-situ composites with the base composition of Nb-18Si-2HfC were prepared by conventional arc-melting. Their microstructures and mechanical properties, such as high-temperature strength and room temperature fracture toughness, were investigated to elucidate the effects of Re alloying. The in-situ composites predominantly have eutectic microstructures consisting of an Nb solid solution (NbSS) and Nb5Si3. The compressive strength increased with the increasing Re contents at 1470K and not at 1670 K. The strengthening effect observed at 1470 K is higher than that by W and Mo. Re alloying of about 2 % is valuable for improving both the high temperature strength and room temperature fracture toughness of Nb-18Si-2HfC base materials.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 306-308)

Pages:

941-946

Citation:

Online since:

March 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. R. Jackson, B. P. Bewlay and R. G. Rowe: JOM Vol. 48 (1996), January, p.39.

Google Scholar

[2] P.R. Subramanian, M.G. Mendiratta and D. M. Dimiduk: JOM Vol. 48 (1996), January, p.33.

Google Scholar

[3] T. Tabaru, S. Hanada, Intermetallics Vol. 6 (1998), p.735.

Google Scholar

[4] T. Tabaru, S. Hanada: Intermetallics Vol. 7 (1999), p.807.

Google Scholar

[5] J.B. Sha, H. Hirai, T. Tabaru, H. Ueno, A. Kitahara and S. Hanada: J. Jpn. Inst. Met. Vol. 64 (2000), p.31 (in Japanese).

Google Scholar

[6] H. Hirai, T. Tabaru, H. Ueno, A. Kitahara and S. Hanada: J. Jpn. Inst. Met. Vol. 64 (2000), p.474 (in Japanese).

Google Scholar

[7] T. Tabaru, K. Shobu, J. H. Kim, H. Hirai and S. Hanada: Mater. Sci. Forum Vols. 426-432 (2003), p.2581.

DOI: 10.4028/www.scientific.net/msf.426-432.2581

Google Scholar

[8] T. Tabaru, J. H. Kim, K. Shobu, M. Sakamoto, H. Hirai and S. Hanada: Metall. Mater. Trans. A (in press).

Google Scholar

[9] R. Gnanamoorthy, S. Hanada and K. Kamata: Scripta Mater. Vol. 34 (1996), p.999.

Google Scholar

[10] T. Tabaru and S. Hanada: PRICM3 (TMS, USA 1998), p.537.

Google Scholar

[11] Weiss, M. Thirukkonda, R. Srinivasan: Mater. Res. Soc. Symp. Proc. Vol. 322 (MRS, USA 1994), p.377.

Google Scholar

[12] B.P. Bewlay, M.R. Jackson and A. Lipsitt: Metal. Trans. A Vol. 27 (1996), p.3801.

Google Scholar

[13] P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk and M.A. Stucke: Mater. Sci. Eng. A 239-240 (1997), p.1.

Google Scholar

[14] J.B. Sha, H. Hirai, T. Tabaru, A. Kitahara, H. Ueno and S. Hanada: Metall. Mater. Trans. A 34 (2003), p.85.

Google Scholar

[15] J.B. Sha, H. Hirai, T. Tabaru, A. Kitahara, H. Ueno and S. Hanada: Mater. Sci. Eng. A 343 (2003), p.282.

Google Scholar

[16] H. Hirai, T. Tabaru, J.B. Sha, H. Ueno, A. Kitahara and S. Hanada: Mater. Res. Soc. Symp. Proc. Vol. 646 (MRS, USA 2001), N5. 41. 1.

Google Scholar

[17] S. W. Wang, H. Hirai, T. Tabaru, A. Kitahara and H. Ueno: Key Eng. Mater. Vols. 261-263 (2004), p.1439.

Google Scholar

[18] R. T. Begley: Evolution of Refractory Metals and Alloys (TMS, USA 1994), p.29.

Google Scholar

[19] J.H. Kin, T. Tabaru, M. Sakamoto and S. Hanada: Mater. Sci. Eng. A 372 (2004), p.137.

Google Scholar