Thermal Conductivity of Zirconia for Thermal Barrier Coatings: A Perturbed Molecular Dynamics Study

Abstract:

Article Preview

Thermal conductivity of pure and Y2O3-doped ZrO2 was calculated using a perturbed molecular dynamics method in order to analyze phonon scattering mechanism which is responsible for the reduction of thermal conductivity. Although absolute values of thermal conductivity were overestimated due to a simple model used in this study, relative values were in good agreement with experiment, which indicates that phonon scattering due to Y2O3 addition is reproduced well. It is found from quantitative analysis of the phonon scattering using the mean field theory that decrease of the thermal conductivity upon Y2O3 addition is attributed not only to the introduction of O2- vacancies but also to substitution of Y3+ ions for Zr4+ ions.

Info:

Periodical:

Key Engineering Materials (Volumes 317-318)

Edited by:

T. Ohji, T. Sekino and K. Niihara

Pages:

521-524

DOI:

10.4028/www.scientific.net/KEM.317-318.521

Citation:

M. Yoshiya et al., "Thermal Conductivity of Zirconia for Thermal Barrier Coatings: A Perturbed Molecular Dynamics Study", Key Engineering Materials, Vols. 317-318, pp. 521-524, 2006

Online since:

August 2006

Export:

Price:

$35.00

[1] S.M. Meier and D.K. Gupta, Trans. ASME, 16, 250 (1994).

[2] S. Raghavan, H. Wang, R.B. Dinwiddie, W.D. Porter, and M.J. Mayo, Scr. Mater., 39, 1119 (1998).

[3] T.J. Lu, C.G. Levi, H.N.G. Wadley, and A.G. Evans, J. Am. Ceram. Soc., 84, 2937 (2001).

[4] R.C. Garvie, J. Mater. Sci., 11, 1365 (1976).

[5] M. Yoshiya, A. Harada, M. Takeuchi, K. Matsunaga, and H. Matsubara, Mol. Simulat., in press.

[6] M. Yoshiya, A. Harada, M. Takeuchi, K. Matsunaga, and H. Matsubara, Phys. Rev. B, submitted.

[7] D.J. Evans, Phys. Lett., 91A (1982) 457.

[8] M.J. Gillan and M. Dixon, J. Phys. C: Solid State Phys., 16, 869 (1983).

[9] P.P. Ewald, Ann. Phys. (Leipzig), 64, 253 (1921).

[10] B. Bernu and P. Vieillefosse, Phys. Rev. A, 18, 2345 (1978).

[11] R. Kubo, J. Phys. Soc. Jpn., 12, 570, (1957).

[12] M.S. Green, J. Chem. Phys., 19, 1036 (1951).

[13] M. Yoshiya and H. Matsubara, J. Jpn. Inst. Metals, 69, 56 (2005).

[14] P.K. Schelling and S.R. Phillpot, J. Am. Ceram. Soc., 84, 2997 (2001).

[15] Materials Explorer version 2. 0 (Fujitsu Limited, 2001).

[16] W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, John Wiley, New York, USA, (1976).

[17] J. -F. Bisson, D. Fournier, M. Poulain, O. Lavigne, and R. Mévrel, J. Am. Ceram. Soc., 83, 1993 (2000).

In order to see related information, you need to Login.