Limit Loads for Circumferential Cracked Pipe Bends under In-Plane Bending

Article Preview

Abstract:

This paper presents limit loads for circumferential cracked pipe bends under in-plane bending, based on detailed three-dimensional finite element limit analyses. FE analyses are performed based on elastic-perfectly-plastic materials and the geometrically linear assumption. Both through-wall cracks and part-through surface cracks (having constant depths) are considered, together with different crack locations (extrados and intrados). Based on the FE results, closed-form approximations are proposed for plastic limit loads of pipe bends. It is found that limit loads of pipe bends are smaller than those of straight pipes, but are close for deep and long cracks.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 321-323)

Pages:

38-42

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Spence J. and Findlay GE. Limit load for pipe bends under in-plane bending. Proc. 2 nd Int. Conf. On Pressure Vessel Technology, San Antonio 1973; 1-28: 393-399.

Google Scholar

[2] Calladine CR. Journal of Mechanical Engineering Science 1974; 16: 85-87.

Google Scholar

[3] Roberston A. Li H. and Mackenzie D. International Journal of Pressure Vessels and Piping 2005; 82: 407-16.

Google Scholar

[4] Miller AG. International Journal of Pressure Vessels and Piping 1988; 32: 191-327.

Google Scholar

[5] Yahiaoui K. Moffat DG. and Moreton DN. Journal of Strain Analysis 2000; 35: 35-46.

Google Scholar

[6] Yahiaoui K. Moffat DG. and Moreton DN. Journal of Strain Analysis 2000; 35: 47-57.

Google Scholar

[7] Chattopadhyay J. Natahani DK. Dutta BK. and Kushwaha HS. Journal of Pressure Vessel Technology 2000; 122: 431-6.

Google Scholar

[8] Yahiaoui K. Moreton DN. and Moffat DG. International Journal of Pressure Vessels and Piping 2002; 79: 27-36.

Google Scholar

[9] Chattopadhyay J. Tomar AKS. Dutta BK. and Kushwaha HS. Journal of Pressure Vessel Technology 2004; 126: 307-317.

Google Scholar

[10] Ainsworth RA. Engineering Fracture Mechanics 1984; 19: 633-42.

Google Scholar

[11] R6: assessment of the integrity of structures containing defects. Revision 4, British Energy; (2001).

Google Scholar

[12] Webster GA, Ainsworth RA. High temperature component life assessment. Chapman & Hall; (1994).

Google Scholar

[13] ABAQUS Version 6. 2-1. User's manual. Hibbitt, Karlsson and Sorensen, Inc, RI; (2001).

Google Scholar