[1]
R. Maboudian, and R. T. Howe, Critical review: Adhesion in surface micromechanical structures, " J. Vac. Sci. Technol. B, vol. 15, pp.1-20.
Google Scholar
[3]
Fang, W.; Wickert, J.A. Post-buckling of micromachined beams" MEMS , 94, Proceedings, 1994, Page(s): 182 -187.
Google Scholar
[4]
Xin Zhang; Tong-Yi Zhang; Man Wong; Yitshak Zohar Effects of high-temperature rapid thermal annealing on the residual stress of LPCVD-polysilicon thin films "MEMS , 97, Proceedings, 1997, Page(s): 535 -540.
DOI: 10.1109/memsys.1997.581922
Google Scholar
[5]
Abe, T.; Reed, M.L. Low strain sputtered polysilicon for micromechanical structures" Micro Electro Mechanical Systems, 1996, MEMS , 96, Proceedings. , 1996, Page(s): 258 -262.
DOI: 10.1109/memsys.1996.493990
Google Scholar
[6]
H. Yen, C. Lee, R. Chen, and M. J. Lin, 2001, Analysis and Fabrication of Deformable Focusing Micromirrors, IMECE 2001, Nov. 11-16, 2001, New York, NY, U. S. A.
Google Scholar
[7]
Max Ti-kuang Hou and Rongshun Chen, Effect of width on the stress-induced bending of micromachined bilayer cantilevers, JMM, vol. 13, 2003, pp.141-148. Figure 1 Numerical model. 0.
DOI: 10.1088/0960-1317/13/1/320
Google Scholar
5 0 20 40 width(µm) deformation(µm) T=800℃ T=700℃ T=600℃ T=500℃ T=400℃ T=300℃ T=200℃ T=100℃ (A)Free ending(L1) 0.
Google Scholar
2 0 20 40 width(µm) deformation(µm) T=800℃ T=700℃ T=600℃ T=500℃ T=400℃ T=300℃ T=200℃ T=100℃ (B)Center line(L2).
Google Scholar
020 0 20 40 width(µm) deformation(µm) T=800℃ T=700℃ T=600℃ T=500℃ T=400℃ T=300℃ T=200℃ T=100℃ (C)Clamp ending(L3) Figure 2 Effect of process temperature on deformation. 0.
Google Scholar
7 0 10 20 30 40 width(μ m) deformation(μ m) h1=1. 5μ m h1=1μ m h1=0. 5μ m h1=0. 2μ m h1=0. 1μ m h1=0. 05μ m (A)Free ending(L1) 0.
DOI: 10.31274/rtd-180816-1958
Google Scholar
25 0 10 20 30 40 width(μ m) deformation(μ m) h1=1. 5μ m h1=1μ m h1=0. 5μ m h1=0. 2μ m h1=0. 1μ m h1=0. 05μ m (B)Center line(L2) 0. 00E+00.
DOI: 10.31274/rtd-180816-1958
Google Scholar
[3]
00E-02 0 10 20 30 40 width(μ m) deformation(μ m) h1=1. 5μ m h1=1μ m h1=0. 5μ m h1=0. 2μ m h1=0. 1μ m h1=0. 05μ m (C)Clamp ending(L3) Figure 3 Effect of metal layer thickness on deformation. 0.
DOI: 10.7717/peerj.10368/fig-3
Google Scholar
[2]
5 0 10 20 30 40 width(μ m) deformation(μ m) h2=3. 5μ m h2=3μ m h2=2μ m h2=1μ m h2=0. 5μ m (A)Free ending(L1).
Google Scholar
[7]
00E-01 0 10 20 30 40 width(μ m) deformation(μ m) h2=3. 5μ m h2=3μ m h2=2μ m h2=1μ m h2=0. 5μ m (B)Center line(L2) -1. 00E-02.
Google Scholar
[6]
00E-02 0 10 20 30 40 width(μ m) deformation(μ m) h2=3. 5μ m h2=3μ m h2=2μ m h2=1μ m h2=0. 5μ m (C)Clamp ending(L3) Figure 4 Effect of structure layer thickness on the deformation. 0.
Google Scholar
8 0 10 20 30 40 width(μ m) deformation(μ m) L=50μ m L=40μ m L=30μ m L=20μ m L=10μ m (A)Free ending(L1) 0.
Google Scholar
25 0 10 20 30 40 width(μ m) deformation(μ m) L=50μ m L=40μ m L=30μ m L=20μ m L=10μ m (B)Center line(L2).
Google Scholar
[1]
60E-02 0 10 20 30 40 width(μ m) deformation(μ m) L=50μ m L=40μ m L=30μ m L=20μ m L=10μ m (C)Clamp ending(L3) Figure 5 Effect of length on deformation.
Google Scholar