The Effect of Temperature and Sizes on Deformation of Cantilever Rectangular Plate with Double Layer

Abstract:

Article Preview

As depositing layers with different thermal expansion coefficients, the residual gradient stress will cause the structure deformed. The deformation of structure in the free ending, middle section, and clamped end are detail investigated. It is found the clamped end often has complex deformation shape. The warpage due to buckling is found. The results show if the thickness of structure is much larger than above deposing layer, warpage will hardly happen and the free ending will have more flat region. As the thickness of structure layer being not much larger than above deposing layer, the warpage happens and the free ending is parabolic shape. In the clamped end, the complex deformation even is concave shape in the center part but protruding shape in the side region. The larger temperature difference will be more easily warpage and be no more flat. The results also show that as the ratio of length to width decreasing, seriously warpage and complex deformation happens. The free ending may be a little protruding shape. However, if the ratio of length to width is larger, the free ending will have concave shape.

Info:

Periodical:

Key Engineering Materials (Volumes 326-328)

Edited by:

Soon-Bok Lee and Yun-Jae Kim

Pages:

1157-1160

DOI:

10.4028/www.scientific.net/KEM.326-328.1157

Citation:

M. J. Lin and Y. J. Chou, "The Effect of Temperature and Sizes on Deformation of Cantilever Rectangular Plate with Double Layer", Key Engineering Materials, Vols. 326-328, pp. 1157-1160, 2006

Online since:

December 2006

Export:

Price:

$35.00

[1] R. Maboudian, and R. T. Howe, Critical review: Adhesion in surface micromechanical structures, " J. Vac. Sci. Technol. B, vol. 15, pp.1-20.

[3] Fang, W.; Wickert, J.A. Post-buckling of micromachined beams" MEMS , 94, Proceedings, 1994, Page(s): 182 -187.

[4] Xin Zhang; Tong-Yi Zhang; Man Wong; Yitshak Zohar Effects of high-temperature rapid thermal annealing on the residual stress of LPCVD-polysilicon thin films "MEMS , 97, Proceedings, 1997, Page(s): 535 -540.

DOI: 10.1109/memsys.1997.581922

[5] Abe, T.; Reed, M.L. Low strain sputtered polysilicon for micromechanical structures" Micro Electro Mechanical Systems, 1996, MEMS , 96, Proceedings. , 1996, Page(s): 258 -262.

DOI: 10.1109/memsys.1996.493990

[6] H. Yen, C. Lee, R. Chen, and M. J. Lin, 2001, Analysis and Fabrication of Deformable Focusing Micromirrors, IMECE 2001, Nov. 11-16, 2001, New York, NY, U. S. A.

[7] Max Ti-kuang Hou and Rongshun Chen, Effect of width on the stress-induced bending of micromachined bilayer cantilevers, JMM, vol. 13, 2003, pp.141-148. Figure 1 Numerical model. 0.

DOI: 10.1088/0960-1317/13/1/320

1.

2.

3.

4.

5 0 20 40 width(µm) deformation(µm) T=800℃ T=700℃ T=600℃ T=500℃ T=400℃ T=300℃ T=200℃ T=100℃ (A)Free ending(L1) 0.

05.

1.

15.

2 0 20 40 width(µm) deformation(µm) T=800℃ T=700℃ T=600℃ T=500℃ T=400℃ T=300℃ T=200℃ T=100℃ (B)Center line(L2).

000.

005.

010.

015.

020 0 20 40 width(µm) deformation(µm) T=800℃ T=700℃ T=600℃ T=500℃ T=400℃ T=300℃ T=200℃ T=100℃ (C)Clamp ending(L3) Figure 2 Effect of process temperature on deformation. 0.

1.

2.

3.

4.

5.

6.

7 0 10 20 30 40 width(μ m) deformation(μ m) h1=1. 5μ m h1=1μ m h1=0. 5μ m h1=0. 2μ m h1=0. 1μ m h1=0. 05μ m (A)Free ending(L1) 0.

DOI: 10.1259/0007-1285-68-805-h1

05.

1.

15.

2.

25 0 10 20 30 40 width(μ m) deformation(μ m) h1=1. 5μ m h1=1μ m h1=0. 5μ m h1=0. 2μ m h1=0. 1μ m h1=0. 05μ m (B)Center line(L2) 0. 00E+00.

DOI: 10.1259/0007-1285-68-805-h1

[5] 00E-03.

[1] 00E-02.

[1] 50E-02.

[2] 00E-02.

[2] 50E-02.

[3] 00E-02 0 10 20 30 40 width(μ m) deformation(μ m) h1=1. 5μ m h1=1μ m h1=0. 5μ m h1=0. 2μ m h1=0. 1μ m h1=0. 05μ m (C)Clamp ending(L3) Figure 3 Effect of metal layer thickness on deformation. 0.

DOI: 10.1259/0007-1285-68-805-h1

5 1.

[1] 5 2.

[2] 5 0 10 20 30 40 width(μ m) deformation(μ m) h2=3. 5μ m h2=3μ m h2=2μ m h2=1μ m h2=0. 5μ m (A)Free ending(L1).

00E+00.

[1] 00E-01.

[2] 00E-01.

[3] 00E-01.

[4] 00E-01.

[5] 00E-01.

[6] 00E-01.

[7] 00E-01 0 10 20 30 40 width(μ m) deformation(μ m) h2=3. 5μ m h2=3μ m h2=2μ m h2=1μ m h2=0. 5μ m (B)Center line(L2) -1. 00E-02.

00E+00.

[1] 00E-02.

[2] 00E-02.

[3] 00E-02.

[4] 00E-02.

[5] 00E-02.

[6] 00E-02 0 10 20 30 40 width(μ m) deformation(μ m) h2=3. 5μ m h2=3μ m h2=2μ m h2=1μ m h2=0. 5μ m (C)Clamp ending(L3) Figure 4 Effect of structure layer thickness on the deformation. 0.

1.

2.

3.

4.

5.

6.

7.

8 0 10 20 30 40 width(μ m) deformation(μ m) L=50μ m L=40μ m L=30μ m L=20μ m L=10μ m (A)Free ending(L1) 0.

05.

1.

15.

2.

25 0 10 20 30 40 width(μ m) deformation(μ m) L=50μ m L=40μ m L=30μ m L=20μ m L=10μ m (B)Center line(L2).

00E+00.

[2] 00E-03.

[4] 00E-03.

[6] 00E-03.

[8] 00E-03.

[1] 00E-02.

[1] 20E-02.

[1] 40E-02.

[1] 60E-02 0 10 20 30 40 width(μ m) deformation(μ m) L=50μ m L=40μ m L=30μ m L=20μ m L=10μ m (C)Clamp ending(L3) Figure 5 Effect of length on deformation.

In order to see related information, you need to Login.