Direct Fabrication of Bulk Nanostructured Ceramic from Nano-Al2O3 Powders by Selective Laser Sintering

Abstract:

Article Preview

Nanostructured ceramic bulk materials were achieved from nano-Al2O3 ceramic powders via direct selective laser sintering (SLS). SLS as a non-traditional machining technology of Rapid Prototyping was introduced and compared with other ceramic forming technologies. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were applied to analyze the microstructure of the ceramic bulk materials. These results demonstrated that the nano-Al2O3 ceramic powders can be sintered into bulk materials maintained nanostructure with some technological parameters. It was found that the nanostructured ceramic bulk exhibited unique microstructure and was free formed rapidly by this sintering technology.

Info:

Periodical:

Edited by:

Dongming Guo, Tsunemoto Kuriyagawa, Jun Wang and Jun’ichi Tamaki

Pages:

613-618

Citation:

L. D. Shen et al., "Direct Fabrication of Bulk Nanostructured Ceramic from Nano-Al2O3 Powders by Selective Laser Sintering", Key Engineering Materials, Vol. 329, pp. 613-618, 2007

Online since:

January 2007

Export:

Price:

$38.00

[1] H. Gleiter: Acta Mater. Vol. 48 (2000), pp.1-29.

[2] R. Vaßen, D. Stöver: Mater. Science and Engineering A Vol. 301 (2001), pp.59-68.

[3] F.H. Froes, O.N. Senkov and E.G. Baburaj: Mater. Science and Engineering A Vol. 301 (2001), pp.44-53.

[4] R. Vaßen, D. StÖver: J. of Mater. Processing Tech. Vol. 92-93 (1999), pp.77-84.

[5] P. Mondal, A. Klein, W. Jaegermann, et al: Solid State Ionics Vol. 118 (1999), pp.331-339.

[6] Xinzhang Zhou, Dustin M. Hulbert, Joshua D. Kuntz, et al: Mater. Science and Engineering A Vol. 394 (2005), pp.353-359.

[7] P. Mondal, A. Klein, W. Jaegermann, et al: Solid State Ionics Vol. 118 (1999), pp.331-339.

[8] R. Chaim, M. Margulis: Mater. Science and Engineering A Vol. 407 (2005), pp.180-187.

[9] R.S. Lima, B.R. Marple: Mater. Science and Engineering A Vol. 395 (2005), pp.269-280.

[10] X. Kuang, G. Carotenuto and L. Nicolais: Advanced Performance Materials Vol. 4 (1997), pp.257-274.

[11] B. Basu, T. Venkateswaran, and D. Sarkar: J. of the European Ceramic Society Vol. 25 (2005), pp.1603-1610.

[12] Lianjun Wang, Wan Jiang, and Lidong Chen: Mater. Letters Vol. 58 (2004), pp.1401-1404.

[13] Xue Yan, P Gu: Computer-Aided Design Vol. 28 (1996), No. 4, pp.307-318.

[14] Zhang Jianhua, Zhao Jianfeng, Tian Zongjun, et al: Laser Technology Vol. 28 (2004), No. 5, pp.455-458. (In Chinese).

[15] B.E. Warren: X-Ray Diffraction (Courier Dover Publications, New York 1990).

[16] Yuwen Zhang, A. Faghri, C. W. Buckley, et al: J. of Heat Transfer, Vol. 122 (2000), pp.150-158.

[17] B.S. Yilbas: Int. J. Heat Mass Transfer Vol. 40 (1997), No. 5, pp.1131-1143.

[18] Shiomi M., Yoshidome A., Abe F., et al: Int. J. of Machine Tools & Manufacture Vol. 39 (1999), pp.237-252.

[19] J.F. Li, L. Li, and Stott F. H: Int. J. of Heat and Mass Transfer Vol. 47 (2004), pp.1159-1174.

[20] Hua Guoran, Huang Yinhui, Zhao Jianfeng, et al: China Mechanical Engineering Vol. 14 (2003), No. 20, pp.1766-1769. (In Chinese).

[21] Hua Guoran, Luo Xinhua, Zhao Jianfeng, et al: China Mechanical Engineering Vol. 15 (2004), No. 15, pp.1372-1374. (In Chinese).