[1]
J. van Suchtelen, Pillips. Res. Repts. 27 (1972), p.28.
Google Scholar
[2]
J. van den Boomgaard et al., J. Mater. Sci. 9 (1974), p.1705.
Google Scholar
[3]
A.M.J.G. van Run, D.R. Terrel and J.H. Scholing, J. Mater. Sci. 9 (1974), p.1710.
Google Scholar
[4]
G. Harshe et al., Int. J. Appl. Electromagn. Mater. 4 (1993), p.145.
Google Scholar
[5]
Y. Benveniste, Phys. Rev. B 51 (1995), p.16424.
Google Scholar
[6]
J.H. Huang and W.S. Kuo, J. Appl. Phys. 81 (1997), p.1378.
Google Scholar
[7]
J. Ryu, et al., J. Electroceram. 7 (2001), p.17.
Google Scholar
[8]
G. Srinivasan et al., Phys. Rev. B 65 (2002), p.134402.
Google Scholar
[9]
M. Fiebig, J. Phys. D-Appl. Phys. 38 (2005), p. R123.
Google Scholar
00 0. 25 0. 50 0. 75 1. 00 1. 25 1. 50.
Google Scholar
[2]
2 Non-dimensional velocity V=c/cshm Non-dimensional wave number K=kh/(2π) First mode Second mode Third mode Fourth mode.
Google Scholar
0 0. 2 0. 4 0. 6 0. 8 1. 0 1. 2 1. 4.
Google Scholar
[1]
7 Non-dimensional wave number K=kh/(2π)Non-dimensional velocity V=c/cshm μ11e = 5×10-2 NS2 /C 2 5×10-6 NS2 /C 2 5×10-10 NS2 /C 2 Fig. 2 Dispersive curves for PZT 4 and Terfenol-D combination when different magnetic permeabilities are used. Fig. 3 Dispersive curves of PZT 4 and Terfenol-D combination for the first fourth modes. Fig. 4 Dispersive curves for combinations of Terfenol-D with PZT-4, BaTiO3 and PZT-7.
DOI: 10.1088/0256-307x/29/5/057801
Google Scholar
00 0. 25 0. 50 0. 75 1. 00 1. 25 1. 50.
Google Scholar
[1]
8 Non-dimensional velocity V=c/cshm Non-dimensional wave number K=kh/(2π) BaTiO3 and Terfenol-D PZT-4 and Terfenol-D PZT-7 and Terfenol-D.
Google Scholar