Implicit Formulation of Homogenization Method for Periodic Elastoplastic Solids

Article Preview

Abstract:

In this study, to determine incremental, perturbed displacement fields in periodic elastoplastic solids, an incremental homogenization problem is fully implicitly formulated, and an algorithm is developed to solve the homogenization problem. It is shown that the homogenization problem can be iteratively solved with quadratic convergences by successively updating strain increments in unit cells, and that the present formulation allows versatility in the initial setting of strain increments in contrast to previous studies. The homogenization algorithm developed is then examined by analyzing a holed plate, with an elastoplastic micro-structure, subjected to tensile loading. It is thus demonstrated that the convergence in iteratively solving the homogenization problem strongly depends on the initial setting of strain increments in unit cells, and that quick convergences can be attained if the initial setting of strain increments is appropriate.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 340-341)

Pages:

1055-1060

Citation:

Online since:

June 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Bensoussan, J. -L. Lions and G. Papanicolaou: Asymptotic Analysis for Periodic Structures, (1978), North Holland, Amsterdam.

Google Scholar

[2] E. Sanchez-Palencia: Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics, Vol. 127 (1980), Springer-Verlag, Berlin.

Google Scholar

[3] J.M. Guedes and N. Kikuchi: Comput. Meth. Appl. Mech. Eng., Vol. 83 (1990), p.143.

Google Scholar

[4] K. Terada and N. Kikuchi: Comput. Meth. Appl. Mech. Eng., Vol. 190 (2001), p.5427.

Google Scholar

[5] C. Miehe: Int. J. Numer. Meth. Eng., Vol. 55 (2002), p.1285.

Google Scholar

[6] P.M. Suquet, in: E. Sanchez-Palencia and Zaoui, A. (Eds. ), Homogenization techniques for composite media, Lecture Notes in Physics, Vol. 272 (1987), p.193, Springer-Verlag, Berlin.

DOI: 10.1007/3-540-17616-0

Google Scholar

[7] R. Hill: J. Mech. Phys. Solids, Vol. 15 (1967), p.79.

Google Scholar

[8] X. Wu and N. Ohno: Int. J. Solids Struct., Vol. 36 (1999), p.4991.

Google Scholar

[9] N. Ohno, D. Okumura and H. Noguchi: J. Mech. Phys. Solids, Vol. 50 (2002), p.1125.

Google Scholar

[10] T. Matsuda, N. Ohno, H. Tanaka and T. Shimizu: Int. J. Mech. Sci., Vol. 45 (2003), p.1583.

Google Scholar

[11] D. Okumura, N. Ohno and H. Noguchi: J. Mech. Phys. Solids, Vol. 52 (2004), p.641.

Google Scholar

[12] K. Matsui, K. Terada and K. Yuge: Comput. Struct., Vol. 82 (2004), p.593.

Google Scholar

[13] J.C. Simo and R.L. Taylor: Comput. Meth. Appl. Mech. Eng., Vol. 48 (1985), p.101.

Google Scholar

[14] J.C. Simo and T.J.R. Hughes: Computational Inelasticity, (1998), Springer-Verlag, New York.

Google Scholar

[15] M. Kobayashi and N. Ohno: Int. J. Numer. Meth. Eng., Vol. 53 (2002).

Google Scholar