Implicit Formulation of Homogenization Method for Periodic Elastoplastic Solids

Abstract:

Article Preview

In this study, to determine incremental, perturbed displacement fields in periodic elastoplastic solids, an incremental homogenization problem is fully implicitly formulated, and an algorithm is developed to solve the homogenization problem. It is shown that the homogenization problem can be iteratively solved with quadratic convergences by successively updating strain increments in unit cells, and that the present formulation allows versatility in the initial setting of strain increments in contrast to previous studies. The homogenization algorithm developed is then examined by analyzing a holed plate, with an elastoplastic micro-structure, subjected to tensile loading. It is thus demonstrated that the convergence in iteratively solving the homogenization problem strongly depends on the initial setting of strain increments in unit cells, and that quick convergences can be attained if the initial setting of strain increments is appropriate.

Info:

Periodical:

Key Engineering Materials (Volumes 340-341)

Edited by:

N. Ohno and T. Uehara

Pages:

1055-1060

Citation:

T. Asada and N. Ohno, "Implicit Formulation of Homogenization Method for Periodic Elastoplastic Solids", Key Engineering Materials, Vols. 340-341, pp. 1055-1060, 2007

Online since:

June 2007

Export:

Price:

$38.00

[1] A. Bensoussan, J. -L. Lions and G. Papanicolaou: Asymptotic Analysis for Periodic Structures, (1978), North Holland, Amsterdam.

[2] E. Sanchez-Palencia: Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics, Vol. 127 (1980), Springer-Verlag, Berlin.

[3] J.M. Guedes and N. Kikuchi: Comput. Meth. Appl. Mech. Eng., Vol. 83 (1990), p.143.

[4] K. Terada and N. Kikuchi: Comput. Meth. Appl. Mech. Eng., Vol. 190 (2001), p.5427.

[5] C. Miehe: Int. J. Numer. Meth. Eng., Vol. 55 (2002), p.1285.

[6] P.M. Suquet, in: E. Sanchez-Palencia and Zaoui, A. (Eds. ), Homogenization techniques for composite media, Lecture Notes in Physics, Vol. 272 (1987), p.193, Springer-Verlag, Berlin.

DOI: https://doi.org/10.1007/3-540-17616-0

[7] R. Hill: J. Mech. Phys. Solids, Vol. 15 (1967), p.79.

[8] X. Wu and N. Ohno: Int. J. Solids Struct., Vol. 36 (1999), p.4991.

[9] N. Ohno, D. Okumura and H. Noguchi: J. Mech. Phys. Solids, Vol. 50 (2002), p.1125.

[10] T. Matsuda, N. Ohno, H. Tanaka and T. Shimizu: Int. J. Mech. Sci., Vol. 45 (2003), p.1583.

[11] D. Okumura, N. Ohno and H. Noguchi: J. Mech. Phys. Solids, Vol. 52 (2004), p.641.

[12] K. Matsui, K. Terada and K. Yuge: Comput. Struct., Vol. 82 (2004), p.593.

[13] J.C. Simo and R.L. Taylor: Comput. Meth. Appl. Mech. Eng., Vol. 48 (1985), p.101.

[14] J.C. Simo and T.J.R. Hughes: Computational Inelasticity, (1998), Springer-Verlag, New York.

[15] M. Kobayashi and N. Ohno: Int. J. Numer. Meth. Eng., Vol. 53 (2002).

Fetching data from Crossref.
This may take some time to load.