A Unified Fatigue Life Calculation Model for Notched Components Based on Elastic-Plastic Fracture Mechanics

Abstract:

Article Preview

Based on Dankert’s et al. [1] initial model for the elastic-plastic evaluation of fatigue crack growth in sheets providing elliptical notches, a generalized procedure enabling an improved evaluation of the effective ranges of the crack driving force (i.e. the J-Integral) as well as the application to arbitrary notched components has been developed [2]. The present paper presents the basic topics of the calculation model as well as its verification using experimental results from notched specimens with various notch shapes subjected to cyclic loading with various load ratios.

Info:

Periodical:

Key Engineering Materials (Volumes 348-349)

Edited by:

J. Alfaiate, M.H. Aliabadi, M. Guagliano and L. Susmel

Pages:

525-528

Citation:

G. Savaidis et al., "A Unified Fatigue Life Calculation Model for Notched Components Based on Elastic-Plastic Fracture Mechanics ", Key Engineering Materials, Vols. 348-349, pp. 525-528, 2007

Online since:

September 2007

Export:

Price:

$38.00

[1] M. Dankert, S. Greuling and T. Seeger, in: Advances in Fatigue Crack Closure Measurement and Analysis, edited by R.C. McClung and J.C. Newman jr., volume 2 ASTM STP 1343 (1999).

[2] J. Brüning, O. Hertel, M. Vormwald and G. Savaidis, in: Fracture of Nano and Engineering Materials and Structures, edited by E.E. Gdoutos, Springer Publishing, Alexandroupolis (2006).

[3] V. Kumar, M.G. German and C.F. Shih: An engineering approach for elastic-plastic fracture analysis, EPRI-Report, Palo Alto (1981).

[4] M Vormwald: Anrißlebensdauervorhersage aus der Basis der Schwingbruchmechanik für kurze Risse (Publ. 47, Inst. Stahlbau u. Werkstoffm. TU Darmstadt, Germany 1989).

[5] G. Savaidis, A. Savaidis, G. Tsamasphyros and Ch. Zhang: Int. J. Mech. Sci. Vol. 44 (2002), p.521.

[6] G. Savaidis, A. Savaidis and T. Seeger: Materialprüfung Vol. 43 (2001), p.78.

[7] I.S. Raju, S.N. Atluri and J.C. Newman, in: Fracture Mechanics: Perspectives and Directions, edited by R.P. Wei and R.P. Gangloff, ASTM STP 1020, (1989).

[8] M. Dankert: Ermüdungsrißwachstum in Kerben (Publ. 60, Inst. f. Stahlbau u. Werkstoffm. TU Darmstadt, Germany 1999).

[9] Bäumel A jr. Experimentelle und numerische Untersuchung der Schwingfestigkeit randschichtverfestigter eigenspannungsbehafteter Bauteile (Publ. 49, Inst. Stahlbau u. Werkstoffm. TU Darmstadt, Germany 1991).

[10] G. Savaidis, M. Dankert and T. Seeger: Fat. Fract. Eng. Mater. Struct. Vol 18 (1995), p.425.

[11] R.C. McClung: Fatigue crack closure and crack growth outside the small scale yielding regime (Publ. 139, University of Illinois at Urbana-Champaign, USA 1987).

[12] J.C. Newman jr.: Int. J. Fract. Vol. 24 (1984), p. R131.

[13] C. Boller and T. Seeger: Materials data for cyclic loading (Elsevier, Netherlands 1987).

[14] H. Saal. Einfluß von Formzahl und Spannungsverhältnis auf die Zeit- und Dauerfestigkeit und Rißfortschreitungen bei Flachstäben aus St52 (Publ. 17, Inst. Stahlbau u. Werkstoffm. TU Darmstadt, Germany 1971).

Fetching data from Crossref.
This may take some time to load.