A Unified Fatigue Life Calculation Model for Notched Components Based on Elastic-Plastic Fracture Mechanics

Article Preview

Abstract:

Based on Dankert’s et al. [1] initial model for the elastic-plastic evaluation of fatigue crack growth in sheets providing elliptical notches, a generalized procedure enabling an improved evaluation of the effective ranges of the crack driving force (i.e. the J-Integral) as well as the application to arbitrary notched components has been developed [2]. The present paper presents the basic topics of the calculation model as well as its verification using experimental results from notched specimens with various notch shapes subjected to cyclic loading with various load ratios.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 348-349)

Pages:

525-528

Citation:

Online since:

September 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Dankert, S. Greuling and T. Seeger, in: Advances in Fatigue Crack Closure Measurement and Analysis, edited by R.C. McClung and J.C. Newman jr., volume 2 ASTM STP 1343 (1999).

DOI: 10.1520/stp15771s

Google Scholar

[2] J. Brüning, O. Hertel, M. Vormwald and G. Savaidis, in: Fracture of Nano and Engineering Materials and Structures, edited by E.E. Gdoutos, Springer Publishing, Alexandroupolis (2006).

Google Scholar

[3] V. Kumar, M.G. German and C.F. Shih: An engineering approach for elastic-plastic fracture analysis, EPRI-Report, Palo Alto (1981).

Google Scholar

[4] M Vormwald: Anrißlebensdauervorhersage aus der Basis der Schwingbruchmechanik für kurze Risse (Publ. 47, Inst. Stahlbau u. Werkstoffm. TU Darmstadt, Germany 1989).

Google Scholar

[5] G. Savaidis, A. Savaidis, G. Tsamasphyros and Ch. Zhang: Int. J. Mech. Sci. Vol. 44 (2002), p.521.

Google Scholar

[6] G. Savaidis, A. Savaidis and T. Seeger: Materialprüfung Vol. 43 (2001), p.78.

Google Scholar

[7] I.S. Raju, S.N. Atluri and J.C. Newman, in: Fracture Mechanics: Perspectives and Directions, edited by R.P. Wei and R.P. Gangloff, ASTM STP 1020, (1989).

Google Scholar

[8] M. Dankert: Ermüdungsrißwachstum in Kerben (Publ. 60, Inst. f. Stahlbau u. Werkstoffm. TU Darmstadt, Germany 1999).

Google Scholar

[9] Bäumel A jr. Experimentelle und numerische Untersuchung der Schwingfestigkeit randschichtverfestigter eigenspannungsbehafteter Bauteile (Publ. 49, Inst. Stahlbau u. Werkstoffm. TU Darmstadt, Germany 1991).

Google Scholar

[10] G. Savaidis, M. Dankert and T. Seeger: Fat. Fract. Eng. Mater. Struct. Vol 18 (1995), p.425.

Google Scholar

[11] R.C. McClung: Fatigue crack closure and crack growth outside the small scale yielding regime (Publ. 139, University of Illinois at Urbana-Champaign, USA 1987).

DOI: 10.1520/stp27219s

Google Scholar

[12] J.C. Newman jr.: Int. J. Fract. Vol. 24 (1984), p. R131.

Google Scholar

[13] C. Boller and T. Seeger: Materials data for cyclic loading (Elsevier, Netherlands 1987).

Google Scholar

[14] H. Saal. Einfluß von Formzahl und Spannungsverhältnis auf die Zeit- und Dauerfestigkeit und Rißfortschreitungen bei Flachstäben aus St52 (Publ. 17, Inst. Stahlbau u. Werkstoffm. TU Darmstadt, Germany 1971).

Google Scholar