Temper Embrittlement and Fracture Control Method Based on NGS Theory and Grain Refinement Technique

Abstract:

Article Preview

Temper embrittlement and fracture control method based on both non-equilibrium grain-boundary segregation (NGS) theory and grain refinement technique are studied in this paper. Grain refinement technique by deformation induced phase transformation in low-alloy steels, 12Gr1MoV and 2.25Gr1MoNb, is investigated. A single-pass hot rolling process by using a Gleeble-1500 system is performed. Experimental results show that steel strength and toughness may be controlled and improved by grain refinement, and that the grain sizes were affected by the deforming temperature, strain reduction, and strain rate. According to the NGS theory, a control method of brittle fracture along grain-boundary is proposed so that some catastrophically brittle fracture failure may be averted. Grain refinement may decrease both the concentration of phosphorus at grain boundaries and the critical time. With the grain refinement technique, the temper embrittlement of steel may be improved, and the critical time may be shortened. The cost of heat treatment for fracture control will therefore be reduced.

Info:

Periodical:

Key Engineering Materials (Volumes 348-349)

Edited by:

J. Alfaiate, M.H. Aliabadi, M. Guagliano and L. Susmel

Pages:

545-548

DOI:

10.4028/www.scientific.net/KEM.348-349.545

Citation:

Q. F. Li et al., "Temper Embrittlement and Fracture Control Method Based on NGS Theory and Grain Refinement Technique ", Key Engineering Materials, Vols. 348-349, pp. 545-548, 2007

Online since:

September 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.