[1]
Nikbin, K.M., Smith, D.J. and Webster, G.A. 1984. Prediction of creep crack growth from uniaxial creep data,. Proc. Roy. Soc. London A, 396, 183-197.
DOI: 10.1098/rspa.1984.0116
Google Scholar
[2]
Tan, M., Celard, N.J.C., Nikbin, K.M. and Webster, G.A. Comparison of creep crack initiation and growth in four steels tested in HIDA, Int. J. Pres. Vess. Piping., 2001; 78, 737-747.
DOI: 10.1016/s0308-0161(01)00085-0
Google Scholar
[3]
Yatomi, M., Nikbin, K. M., O'Dowd, N. P. and Webster, G. A., Theoretical and Numerical Modelling of Creep Crack Growth in a C-Mn Steel, Engineering Fracture Mechanics 73 (2006), 1158-1175.
DOI: 10.1016/j.engfracmech.2005.12.012
Google Scholar
[4]
Hayhurst, D.R., Dimmer, P.R. and Morrison, C.J., Development of Continuum Damage in the Creep Rupture of Notched bars, Phil. Trans. R. Soc. Lond. A 1984; 311, 103-129.
DOI: 10.1098/rsta.1984.0021
Google Scholar
[5]
Yatomi, M., Nikbin, K.N. and O'Dowd, N.P., Int. J. of Press. Vessels and Piping, 2003, 80, 573-583.
Google Scholar
[6]
Cocks, A.C.F. and Ashby, M.F., Intergranular Fracture during Power-law creep under Multiaxial stress, Metal Science 1980; 14, 395-402.
DOI: 10.1179/030634580790441187
Google Scholar
[7]
ABAQUS version 6. 3, 2004. Hibbitt, Karlsson & Sorensen, Inc.
Google Scholar
[8]
Webster, G. A., Ainsworth, R. A., High Temperature Component Life Assessment, 1st ed. 1994, London: Chapman and Hall.
Google Scholar
[9]
Riedel, H. and Rice, J. R., Tensile Cracks in Creeping Solids, in Fracture Mechanics Twelfth Conference, 1980, St-Louis, ASTM STP 700, ASTM, pp.112-130.
DOI: 10.1520/stp36967s
Google Scholar
[10]
Davies, C. M., Mueller, F, Nikbin, K. M., O'Dowd, N. P. and Webster, G. A., 'Analysis of Creep Crack Initiation and Growth in Different Geometries for 316H and C-Mn, ASTM STP 1480, (2007).
DOI: 10.1520/jai13220
Google Scholar
[11]
Yatomi, M., Nikbin, K. M., Virtual Methods in Creep Crack Growth Predictions in Welded Components, IOM conference on welded structures, London April 22-24 th , (2007).
Google Scholar
[10]
-1 10-4 10-3 10-2 10 -1 100 101 102.
Google Scholar
[10]
[3] [10] [4] FEM, Plane stress FEM, Plane strain NSW, Plane stress NSW, Plane strain da/dt, (mm/h) C*, (J/m.
DOI: 10.1002/nme.1620231005
Google Scholar
[2]
h) Band for Experimental CT data εf = 18 % ∆ < 0. 5 . Band for Experimental CT data.
Google Scholar
[10]
-1 10-4 10-3 10-2 10 -1 100 101 102 103 104 FEM, Plane stress FEM, Plane strain ext_NSW, Plane stress(θ = 0) ext_NSW, Plane strain(θ = 0) da/dt, (mm/h) C*, (J/m 2h) εf = 18 % ∆ < 0. 5 . Figure 1: Comparison between FE prediction and experimental data for C-Mn steels at 360 o C with (a) NSW model and (b) NSW-MOD where εf = 18% and n = 10 were used [5].
DOI: 10.1002/nme.1620231005
Google Scholar
[10]
[0] [10] [1] [10] [2] [10] [3] da/dt (mm/h) C* (J/m 2h) NSW, Plane stress NSW, Plane strain Experimental data band for C(T) specimens.
Google Scholar
[10]
-2 10-1.
Google Scholar
[10]
[0] [10] [1] [10] [2] [10] [3] FE, Plane stress FE, Plane strain NSW-MOD, Plane stress NSW-MOD, Plane strain da/dt (mm/h) C* (J/m.
Google Scholar
[2]
h) Figure 2 Comparison between a) NSW and b) NSW-MOD predictions with the experimental results for 316H stainless steel at 550 o C. Where εf = 10% and n = 10 were used [11] (a) (b) (a) (b).
Google Scholar