Lateral Stress Effect on Fracture Quantities of a Crack in a Piezoelectric Medium

Article Preview

Abstract:

The aim of this paper is to seek the solution to the electromechanical field equations for a cracked linear piezoelectric body using an analytical approach which is based on the decomposition theorem of linear algebra. The electroelastic fields around the crack tip are given. The energy release rate is written in terms of those fields intensity factors.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 348-349)

Pages:

957-960

Citation:

Online since:

September 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. A. Sosa and Y. E. Pak: Three dimensional eigenfunction analysis of a crack in a piezoelectric material. Int. J. Solids Structures, Vol. 26 (1990), pp.1-15.

DOI: 10.1016/0020-7683(90)90090-i

Google Scholar

[2] H. A. Sosa: Plane problems in piezoelectric media with defects. Int. J. Solids Structures, Vol. 28 (1991), pp.491-505.

DOI: 10.1016/0020-7683(91)90061-j

Google Scholar

[3] Y. E. Pak: Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fracture, Vol. 54 (1991), pp.79-100.

DOI: 10.1007/bf00040857

Google Scholar

[4] G. C. Sih and J. Z. Zuo: Multiscale behaviour of crack initiation and growth in piezoelectric ceramics. Theor. Appl. Frac. Mechanics, Vol. 34 (2000), pp.123-141.

DOI: 10.1016/s0167-8442(00)00031-8

Google Scholar

[5] J.Z. Zuo and G. C. Sih: Energy density theory formulation and interpretation of cracking behaviour for piezoelectric materials. Theor. Appl. Frac. Mechanics, Vol. 34 (2000), pp.17-33.

DOI: 10.1016/s0167-8442(00)00021-5

Google Scholar

[6] C. M . Landis : Energetically consistent boundary conditions for electromechanical fracture. Int. J. Solids Structures, Vol. 41 (2004), pp.6291-6315.

DOI: 10.1016/j.ijsolstr.2004.05.062

Google Scholar

[7] U. Groh and M. Kuna: Efficient boundary element analysis of cracks in 2D piezoelectric structures. Int. J. Solids Structures, Vol. 42 (2005), pp.2399-2416.

DOI: 10.1016/j.ijsolstr.2004.09.023

Google Scholar

[8] A. Piva and E. Viola: Crack propagation in an orthotropic medium. Eng. Fract. Mech, Vol. 29 (1988), pp.535-548.

DOI: 10.1016/0013-7944(88)90179-8

Google Scholar

[9] A. Piva, E. Viola and F. Tornabene: Crack propagation in an orthotropic medium with coupled elastodynamic properties. Mech. Res. Comm, Vol. 32 (2005), pp.153-169.

DOI: 10.1016/j.mechrescom.2004.03.008

Google Scholar

[10] A. Piva, F. Tornabene and E. Viola: Crack propagation in a four-parameter piezoelectric medium. Eur. J. Mech. A/Solids, Vol. 25 (2006), pp.230-249.

DOI: 10.1016/j.euromechsol.2005.09.002

Google Scholar

[11] M. W. Hirsch and S. Smale: Differential Equations. Dynamical Systems and Linear Algebra. Academic Press, New York. (1974).

Google Scholar

[12] E. Viola, C. Belmonte and G. Viola: Biaxial load effect on a crack in a piezoelectric material. Technical note, DISTART Department, University of Bologna, Italy, (2007).

Google Scholar