Lateral Stress Effect on Fracture Quantities of a Crack in a Piezoelectric Medium

Abstract:

Article Preview

The aim of this paper is to seek the solution to the electromechanical field equations for a cracked linear piezoelectric body using an analytical approach which is based on the decomposition theorem of linear algebra. The electroelastic fields around the crack tip are given. The energy release rate is written in terms of those fields intensity factors.

Info:

Periodical:

Key Engineering Materials (Volumes 348-349)

Edited by:

J. Alfaiate, M.H. Aliabadi, M. Guagliano and L. Susmel

Pages:

957-960

Citation:

E. Viola et al., "Lateral Stress Effect on Fracture Quantities of a Crack in a Piezoelectric Medium", Key Engineering Materials, Vols. 348-349, pp. 957-960, 2007

Online since:

September 2007

Export:

Price:

$38.00

[1] H. A. Sosa and Y. E. Pak: Three dimensional eigenfunction analysis of a crack in a piezoelectric material. Int. J. Solids Structures, Vol. 26 (1990), pp.1-15.

DOI: https://doi.org/10.1016/0020-7683(90)90090-i

[2] H. A. Sosa: Plane problems in piezoelectric media with defects. Int. J. Solids Structures, Vol. 28 (1991), pp.491-505.

[3] Y. E. Pak: Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fracture, Vol. 54 (1991), pp.79-100.

[4] G. C. Sih and J. Z. Zuo: Multiscale behaviour of crack initiation and growth in piezoelectric ceramics. Theor. Appl. Frac. Mechanics, Vol. 34 (2000), pp.123-141.

DOI: https://doi.org/10.1016/s0167-8442(00)00031-8

[5] J.Z. Zuo and G. C. Sih: Energy density theory formulation and interpretation of cracking behaviour for piezoelectric materials. Theor. Appl. Frac. Mechanics, Vol. 34 (2000), pp.17-33.

DOI: https://doi.org/10.1016/s0167-8442(00)00021-5

[6] C. M . Landis : Energetically consistent boundary conditions for electromechanical fracture. Int. J. Solids Structures, Vol. 41 (2004), pp.6291-6315.

DOI: https://doi.org/10.1016/j.ijsolstr.2004.05.062

[7] U. Groh and M. Kuna: Efficient boundary element analysis of cracks in 2D piezoelectric structures. Int. J. Solids Structures, Vol. 42 (2005), pp.2399-2416.

DOI: https://doi.org/10.1016/j.ijsolstr.2004.09.023

[8] A. Piva and E. Viola: Crack propagation in an orthotropic medium. Eng. Fract. Mech, Vol. 29 (1988), pp.535-548.

[9] A. Piva, E. Viola and F. Tornabene: Crack propagation in an orthotropic medium with coupled elastodynamic properties. Mech. Res. Comm, Vol. 32 (2005), pp.153-169.

DOI: https://doi.org/10.1016/j.mechrescom.2004.03.008

[10] A. Piva, F. Tornabene and E. Viola: Crack propagation in a four-parameter piezoelectric medium. Eur. J. Mech. A/Solids, Vol. 25 (2006), pp.230-249.

DOI: https://doi.org/10.1016/j.euromechsol.2005.09.002

[11] M. W. Hirsch and S. Smale: Differential Equations. Dynamical Systems and Linear Algebra. Academic Press, New York. (1974).

[12] E. Viola, C. Belmonte and G. Viola: Biaxial load effect on a crack in a piezoelectric material. Technical note, DISTART Department, University of Bologna, Italy, (2007).

Fetching data from Crossref.
This may take some time to load.