Analysis of Stress Intensity Factors of a Planar Rectangular Interfacial Crack in Three Dimensional Bimaterials

Article Preview

Abstract:

In this study, a rectangular interfacial crack in three dimensional bimaterials is analyzed. First, the problem is formulated as a system of singular integral equations on the basis of the body force method. In the numerical analysis, unknown body force densities are approximated by the products of the fundamental density functions and power series, where the fundamental density functions are chosen to express a two-dimensional interface crack exactly. The calculation shows that the present method gives smooth variations of stress intensity factor along the crack front for various aspect ratios. The present method gives rapidly converging numerical results and highly satisfied boundary conditions throughout the crack boundary. It is found that the stress intensity factors K1 and K2 are determined by bimaterials constant e alone, independent of elastic modulus ratio and Poisson's ratio.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 353-358)

Pages:

2449-2452

Citation:

Online since:

September 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. I. Mossakovski and M.T. Rybka, Prikl. Mat. Mekh., Vol. 28, (1964), p.1061.

Google Scholar

[2] F. England, Trans. ASME, Ser. E, Journal of Applied Mechanics, Vol. 32, (1965), p.829.

Google Scholar

[3] M. K. Kassir and A.M. Bgegman, Trans. ASME. Ser. E. Journal of Applied Mechanics, Vol. 39, (1972), p.308.

Google Scholar

[4] M. Lowengrub and I.N. Senddon, Int. J. Engng. Sci., Vol. 12, (1974), p.387.

Google Scholar

[5] T. Shibuya, T. Koizumi and T. Iwamoto, JSME Int. J., Vol. 32, (1989), p.485.

Google Scholar

[6] N. A. Noda M. Kagita and M.C. Chen International Journal of Solids and Structures, Vol. 40, No. 24, (2003), p.6577.

Google Scholar

[7] M. C. Chen, N.A. Noda and R.J. Tang, Journal of Applied Mechanics, Vol. 66, (1999), p.885.

Google Scholar

[8] N.A. Noda and S. Miyoshi International Journal of Fracture, Vol. 75, (1996), p.19.

Google Scholar

[9] Q. Wang and N.A. Noda, International Journal of Fracture, Vol. 108, (2001), p.119.

Google Scholar