The Effect of Reaction Conditions on Hydroxyapatite Particle Morphology and Applications to the Reticulated Foam Method of Scaffold Production

Article Preview

Abstract:

The production of nano-scale hydroxyapatite (HA) suspensions to be used for the reticulated foam method of scaffold production was investigated at temperatures of between 10 and 60OC. An increase in reaction temperature was associated with an increase in the particle size and some decrease in the aspect ratio of the particles. Pre-treatment of the polyurethane foam template using PPDS (potassium peroxodisulfate) solution resulted in a significantly improved coating of HA when compared to the untreated samples or those treated with ethanol. Initial trials coating the polyurethane with HA produced at the different reaction temperatures showed a superior coating with the suspension produced at 10OC compared to that at 60OC. A scaffold was produced using the HA suspension produced at room temperature, but further understanding of the suspension properties and the optimum conditions for coating of the PU foam are required for improved mechanical performance.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 361-363)

Pages:

3-6

Citation:

Online since:

November 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, D., Scharnweber, D., and Schulte, K., Materials Science and Engineering A, (2003). 362: pp.40-60.

DOI: 10.1016/s0921-5093(03)00580-x

Google Scholar

[2] Rodríguez-Lorenzo, L.M. and Ferreira, J.M.F., Materials Research Bulletin, (2004). 39: pp.83-91.

Google Scholar

[3] Jinawath, S., Polchai, D., and Yoshimura, M., Materials Science and Engineering C, (2002). 22: pp.35-39.

Google Scholar

[4] Rocha, J.H.G., Lemos, A.F., Agathopoulos, S., Valerio, P., Kannan, S., Oktar, F.N., and Ferreira, J.M.F., Bone, (2005). 37(6): pp.850-857.

DOI: 10.1016/j.bone.2005.06.018

Google Scholar

[5] Tamai, N., Myoui, A., Tomita, T., Nakase, T., Tanaka, J., Ochi, T., and Yoshikawa, H., Journal of Biomedical Materials Research, (2001). 59: pp.110-117.

DOI: 10.1002/jbm.1222

Google Scholar

[6] Tian, J. and Tian, J., Journal of Materials Science, (2001). 36: pp.3061-3066.

Google Scholar

[7] Kim, H. -W., Lee, S. -Y., Bae, C. -J., Noh, Y. -J., Kim, H. -E., Kim, H. -M., and Ko, J.S., Biomaterials, (2003). 24: pp.3277-3284.

DOI: 10.1016/s0142-9612(03)00162-5

Google Scholar

[8] Kim, H. -W., Knowles, J.C., and Kim, H. -E., Journal of Biomedical Materials Research, Part B: Applied Biomaterials., (2004). 70B: pp.240-249.

Google Scholar

[9] Chu, T. -M.G., Halloran, J.W., Hollister, S.J., and Feinberg, S.E., Journal of Materials Science: Materials in Medicine, (2001). 12: pp.471-478.

DOI: 10.1023/a:1011203226053

Google Scholar

[10] Woez, A., Rumpler, M., Stampfl, J., Varga, F., Fratzl-Zelman, N., Roschger, P., Klaushofer, K., and Fratzl, P., Materials Science and Engineering C, (2005). 25: pp.181-186.

DOI: 10.1016/j.msec.2005.01.014

Google Scholar

[11] Bouyer, E., Gitzhofer, F., and Boulos, M.I., Journal of Materials Science: Materials in Medicine, (2000). 11(8): pp.523-531.

DOI: 10.1023/a:1008918110156

Google Scholar

[12] Lazic, S., Zec, S., Miljevic, N., and Milonjic, S., Thermochimica Acta, (2001). 374(1): pp.13-22.

Google Scholar

[13] J. Barralet, S.B.W.B., Journal of Biomedical Materials Research, (1998). 41(1): pp.79-86.

Google Scholar

[14] Luyten, J., Thijs, I., Vandermeulen, W., Mullens, S., Wallaeys, B., and Mortelmans, R., Advances in Applied Ceramics, (2005). 104: pp.4-8.

DOI: 10.1179/174367605225010990

Google Scholar

[15] Mobasherpour, I., Heshajin, M.S., Kazemzadeh, A., and Zakeri, M., Journal of Alloys and Compounds, (2007). 430(1-2): pp.330-333.

DOI: 10.1016/j.jallcom.2006.05.018

Google Scholar

[16] Bamford, C.H. and Al-Lamee, K.G., Polymer, (1994). 35(13): pp.2844-2852.

Google Scholar