The Effect of Reaction Conditions on Hydroxyapatite Particle Morphology and Applications to the Reticulated Foam Method of Scaffold Production

Abstract:

Article Preview

The production of nano-scale hydroxyapatite (HA) suspensions to be used for the reticulated foam method of scaffold production was investigated at temperatures of between 10 and 60OC. An increase in reaction temperature was associated with an increase in the particle size and some decrease in the aspect ratio of the particles. Pre-treatment of the polyurethane foam template using PPDS (potassium peroxodisulfate) solution resulted in a significantly improved coating of HA when compared to the untreated samples or those treated with ethanol. Initial trials coating the polyurethane with HA produced at the different reaction temperatures showed a superior coating with the suspension produced at 10OC compared to that at 60OC. A scaffold was produced using the HA suspension produced at room temperature, but further understanding of the suspension properties and the optimum conditions for coating of the PU foam are required for improved mechanical performance.

Info:

Periodical:

Key Engineering Materials (Volumes 361-363)

Main Theme:

Edited by:

Guy Daculsi and Pierre Layrolle

Pages:

3-6

Citation:

J.H. Robinson et al., "The Effect of Reaction Conditions on Hydroxyapatite Particle Morphology and Applications to the Reticulated Foam Method of Scaffold Production", Key Engineering Materials, Vols. 361-363, pp. 3-6, 2008

Online since:

November 2007

Export:

Price:

$38.00

[1] Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, D., Scharnweber, D., and Schulte, K., Materials Science and Engineering A, (2003). 362: pp.40-60.

DOI: https://doi.org/10.1016/s0921-5093(03)00580-x

[2] Rodríguez-Lorenzo, L.M. and Ferreira, J.M.F., Materials Research Bulletin, (2004). 39: pp.83-91.

[3] Jinawath, S., Polchai, D., and Yoshimura, M., Materials Science and Engineering C, (2002). 22: pp.35-39.

[4] Rocha, J.H.G., Lemos, A.F., Agathopoulos, S., Valerio, P., Kannan, S., Oktar, F.N., and Ferreira, J.M.F., Bone, (2005). 37(6): pp.850-857.

DOI: https://doi.org/10.1016/j.bone.2005.06.018

[5] Tamai, N., Myoui, A., Tomita, T., Nakase, T., Tanaka, J., Ochi, T., and Yoshikawa, H., Journal of Biomedical Materials Research, (2001). 59: pp.110-117.

[6] Tian, J. and Tian, J., Journal of Materials Science, (2001). 36: pp.3061-3066.

[7] Kim, H. -W., Lee, S. -Y., Bae, C. -J., Noh, Y. -J., Kim, H. -E., Kim, H. -M., and Ko, J.S., Biomaterials, (2003). 24: pp.3277-3284.

[8] Kim, H. -W., Knowles, J.C., and Kim, H. -E., Journal of Biomedical Materials Research, Part B: Applied Biomaterials., (2004). 70B: pp.240-249.

[9] Chu, T. -M.G., Halloran, J.W., Hollister, S.J., and Feinberg, S.E., Journal of Materials Science: Materials in Medicine, (2001). 12: pp.471-478.

[10] Woez, A., Rumpler, M., Stampfl, J., Varga, F., Fratzl-Zelman, N., Roschger, P., Klaushofer, K., and Fratzl, P., Materials Science and Engineering C, (2005). 25: pp.181-186.

DOI: https://doi.org/10.1016/j.msec.2005.01.014

[11] Bouyer, E., Gitzhofer, F., and Boulos, M.I., Journal of Materials Science: Materials in Medicine, (2000). 11(8): pp.523-531.

DOI: https://doi.org/10.1023/a:1008918110156

[12] Lazic, S., Zec, S., Miljevic, N., and Milonjic, S., Thermochimica Acta, (2001). 374(1): pp.13-22.

DOI: https://doi.org/10.1016/s0040-6031(01)00453-1

[13] J. Barralet, S.B.W.B., Journal of Biomedical Materials Research, (1998). 41(1): pp.79-86.

[14] Luyten, J., Thijs, I., Vandermeulen, W., Mullens, S., Wallaeys, B., and Mortelmans, R., Advances in Applied Ceramics, (2005). 104: pp.4-8.

DOI: https://doi.org/10.1179/174367605225010990

[15] Mobasherpour, I., Heshajin, M.S., Kazemzadeh, A., and Zakeri, M., Journal of Alloys and Compounds, (2007). 430(1-2): pp.330-333.

DOI: https://doi.org/10.1016/j.jallcom.2006.05.018

[16] Bamford, C.H. and Al-Lamee, K.G., Polymer, (1994). 35(13): pp.2844-2852.

Fetching data from Crossref.
This may take some time to load.