High Cycle Fatigue Behavior of Normalized 0.15% C Steel under Tension-Compression and Torsion Loading

Article Preview

Abstract:

Fatigue properties of mild steel are investigated under cyclic tension-compression and cyclic torsion loading using ultrasonic fatigue testing equipment and cycling frequency of approx. 20 kHz. Both S-N curves show a distinct change of slope at about 107 cycles, and endurance limits determined at 107 and 109 cycles differ by less than their respective standard deviations. Endurance limit shear stress determined for cyclic torsion loading is about 60% of the tension-compression endurance limit stress, and the slopes of the S-N curves are comparable. Non-propagating cracks could be found in specimens, which did not fail within 109 cycles in torsion loading endurance tests. The endurance limit can be understood as maximum stress amplitude, where possibly formed small cracks do not propagate to failure.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 378-379)

Pages:

29-38

Citation:

Online since:

March 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Naito, H. Ueda, and M. Kikuchui: Metal. Trans., 1984. 15A: pp.1431-1436.

Google Scholar

[2] K. Asami and Y. Sugiyama: J. Heat Treatment Technol. Assoc., 1985. 25: pp.147-150.

Google Scholar

[3] Y. Murakami, M. Takada, and T. Toriyama: Int. J. Fatigue, 1998. 16(9): pp.661-667.

Google Scholar

[4] T.M. Sakai, K. Takeda, and Y. Shiozawa, in: Proc. of the 7th Int. Fatigue Conf. 1999. Beijing, China: Higher Education Press, Beijing, China. pp.573-578.

Google Scholar

[5] K. Shinozawa, L. Lu, and S. Ishihara: Fatigue Fract. Engng. Mater. Struct., 2001. 24(12): pp.781-790.

Google Scholar

[6] K. Tanaka and Y. Akiniwa: Fatigue Fract. Engng. Mater. Struct., 2002. 25: pp.775-784.

Google Scholar

[7] Y. Ochi, T. Matsumura, K. Masaki, and S. Yoshida: Fatigue Fract. Eng. Mat. Struct., 2002. 25: pp.823-830.

Google Scholar

[8] T. Billaudeau, Y. Nadot, and G. Bezine: Acta Mater., 2004. 52: pp.3911-3920.

DOI: 10.1016/j.actamat.2004.05.006

Google Scholar

[9] F. Morel and L. Flaceliere: Int. J. Fatigue, 2005. 27: pp.1089-1101.

Google Scholar

[10] D. Ninic: Int. J. Fatigue, 2006. 28: pp.103-113.

Google Scholar

[11] P. Lukas and L. Kunz: Fatigue Fract. Engng. Mater. Struct., 2002. 25: pp.747-753.

Google Scholar

[12] E.R. De Los Rios, H.J. Mohamed, and K.J. Miller: Fatigue Fract. Engng. Mater. Struct., 1985. 8(1): pp.49-63.

Google Scholar

[13] M.D. Chapetti, N. Katsura, T. Tagawa, and T. Miyata: Int. J. Fatigue, 2001. 23: pp.207-214.

Google Scholar

[14] H. Mayer: Int. J. Fatigue, 2006. 28(11): pp.1446-1455.

Google Scholar

[15] W.W. Maenning, in: ASM Handbook Fatigue and Fracture, S.R. Lampman, et al., Editors. 1997, ASM International: Materials Park OH. pp.303-313.

Google Scholar

[16] B. Zettl, H. Mayer, C. Ede, and S. Stanzl-Tschegg: Int. J. Fatigue, 2006. 28(11): pp.1583-1589.

Google Scholar