Advances in Cyclic Behavior and Lifetime Modeling of Tempered Martensitic Steels Based on Microstructural Considerations

Article Preview

Abstract:

Cyclic behavior and life prediction of two tempered martensitic steels (AISI H11 and L6) are investigated under thermo-mechanical loading conditions. Two non isothermal constitutive models developed in the same framework of the thermodynamics of irreversible processes are introduced. The first one, in relation with the tempering state, considers the fatigue-ageing phenomena whereas the second one is intended to take into account more complex loading paths. This last non unified approach allows to define different strain mechanisms which can be related to microstructural considerations. The strain-stress parameters provided by both approaches can be introduced into a lifetime model which is based on continuum damage mechanics.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 378-379)

Pages:

81-100

Citation:

Online since:

March 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Velay, G. Bernhart and L. Penazzi: International Journal of Plasticity Vol. 22 (2006), p.459.

Google Scholar

[2] Z. Ahmer, V. Velay, G. Bernhart and F. Rezai-Aria: proceedings of the 7 th Tooling Conference, Torino, Italy (2006).

Google Scholar

[3] Z. Zhang, D. Delagnes and G. Bernhart : International Journal of Fatigue Vol. 24 (2002), p.635.

Google Scholar

[4] G. Bernhart, G. Moulinier, O. Brucelle and D. Delagnes: International Journal of Fatigue Vol. 21, n°2 (1999), p.179.

Google Scholar

[5] Z. Zhang, G. Bernhart and D. Delagnes: International Journal of Fatigue, article in press (2007).

Google Scholar

[6] S. Bari and T. Hassan: Intenational Journal of Plasticity, Vol. 18, (2002), p.873.

Google Scholar

[7] L. Vincent , S. Calloch and S. Marquis: International Journal of Plasticity, Vol. 20, (2004), p.1817.

Google Scholar

[8] N. Mebarki, D. Delagnes, P. Lamesle, F. Delmas and C. Levaillant: Materials Science Engineering A, Vol. 387-389, (2004) p.171.

DOI: 10.1016/j.msea.2004.02.073

Google Scholar

[9] G. Cailletaud and K. Sai: International Journal of Plasticity, vol. 23(9), 2007, p.1589.

Google Scholar

[10] G. Cailletaud and K. Sai: International Journal of Plasticity, Vol. 11, (1995), p.991.

Google Scholar

[11] J. Lemaître, J-L. Chaboche, Mechanics of solid materials, Cambridge University Press (1994).

Google Scholar

[12] J.L. Chaboche and P.M. Lesne: Fatigue and Fracture of Engineering Materials and Structures, Vol. 11, (1998) p.17.

Google Scholar

[13] E. Nicouleau-Bourles : PhD thesis, Ecole Nationale Supérieure des Mines de Paris, (1999).

Google Scholar

[14] F. Gallerneau : PhD thesis, Ecole Nationale Supérieure des Mines de Paris (1995).

Google Scholar

[15] N . Mebarki : PhD Thesis, Ecole Nationale Supérieure des Mines de Paris, (2003).

Google Scholar

[16] P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon and C. Levaillant, Acta Materialia, Vol. 55, (2007), p.4877.

DOI: 10.1016/j.actamat.2007.05.004

Google Scholar

[17] V. Velay, G. Bernhart, D. Delagnes and L. Penazzi: Fatigue and Fracture of Engineering Materials and Structures Vol. 28, (2005) p.1009.

Google Scholar

[18] V. Velay : PhD thesis, Ecole Nationale Supérieure des Mines de Paris, (2003).

Google Scholar

[19] D. Delagnes : PhD thesis, Ecole Nationale Supérieure des Mines de Paris, (1998).

Google Scholar

[20] A. Oudin : PhD thesis, Ecole Nationale Supérieure des Mines de Paris, (2001).

Google Scholar

[21] S. Arnold, A. Saleeb and T. Wilt: Journal of Engineering Materials and Technology, Vol. 117, (1995) p.157.

Google Scholar

[22] B. Halphen and Q. Nguyen: Mechanics Research Communication Vol. 1 (1974) p.43.

Google Scholar

[23] A. Benallal and D. Marquis: Journal of Engineering Materials and Technology, Vol. 109 (1987) p.326.

Google Scholar

[24] J.L. Chaboche: International Journal of Plasticity, Vol. 5, (1989) p.247.

Google Scholar

[25] S. Bodner: Unified Constitutive Equations for Creep and Plasticity, Elsevier Applied Science, London (1987).

Google Scholar

[26] Z. Zhang: PhD thesis, Ecole Nationale Supérieure des Mines de Paris, (2002).

Google Scholar

[27] J.L. Chaboche, N. El Mayas and P. Paulmier: CR Acad. Sci. Paris, Vol 320, (1995) p.9.

Google Scholar

[28] J.L. Chaboche: La recherche Aérospatiale, Vol. 5, (1983), p.363.

Google Scholar

[29] N. Ohno: Journal of Applied Mechanics, Vol. 49, (1982) p.721.

Google Scholar

[30] D. Nouailhas, D. policella, H. Kaczmarek: International Conference on Constitutive laws for Engineering Materials, Elsevier, Tuscon, Arizona (1983), p.45.

Google Scholar

[31] V. Velay, G. Bernhart, Z. Zhang and L. Penazzi: CAMP2002, high temperature fatigue, Paderborn, Germany (2002), p.64.

Google Scholar

[32] J.L. Chaboche: Revue française de Mécanique, (1974), p.50.

Google Scholar

[33] J.L. Chaboche and P.M. Lesne: Fatigue and Fracture of Engineering Materials and Structures, Vol. 11(1), (1988), p.1.

Google Scholar

[34] J. L Chaboche, H. Kaczmarek and P. Raine: La recherche Aérospatiale, (1980), p.177.

Google Scholar

[35] E. Nicouleau-Bourles: PhD thesis Ecole Nationale Supérieure des Mines de Paris, (1999).

Google Scholar